
Computing LZ77 in Run-Compressed Space

Alberto Policriti†∗ and Nicola Prezza†

†University of Udine ∗Institute of Applied Genomics
Via delle scienze, 206 Via J.Linussio, 51
33100, Udine, Italy 33100, Udine, Italy

alberto.policriti@uniud.it

prezza.nicola@spes.uniud.it

Abstract

In this paper, we show that the LZ77 factorization of a text T ∈ Σn can be computed in
O(R log n) bits of working space and O(n logR) time, R being the number of runs in the
Burrows-Wheeler transform of T (reversed). For (extremely) repetitive inputs, the working
space can be as low as O(log n) bits: exponentially smaller than the text itself. Hence, our
result finds important applications in the construction of repetition-aware self-indexes and
in the compression of repetitive text collections within small working space.

Introduction

Being able to estimate and exploit the self-repetitiveness of a text T ∈ Σn is a
task that stands at the basis of many efficient compression algorithms. This issue is
particularly relevant in situations where the text to be processed is extremely large
and repetitive (e.g. consider all versions of the articles belonging to the Wikipedia
corpus or a large set of genomes belonging to the same species): in such cases, it is
not always feasible to load the text into main memory in order to process it, even if
the size of the final compressed representation could easily fit in RAM.

While fixed-order statistical methods are able to exploit only short text regulari-
ties [1], techniques such as Lempel-Ziv parsing (LZ77) [2], grammar compression [3],
and run-length encoding of the Burrows-Wheeler transform [4, 5] have been shown su-
perior in the task of compressing highly repetitive texts. Some recent works showed,
moreover, that such efficient representations can be augmented without asymptot-
ically increasing their space usage in order to support also fast search functionali-
ties [6–8] (repetition-aware self-indexes). One of the most remarkable properties of
such indexes is the possibility of representing (extremely) repetitive texts in exponen-
tially less space than that of the text itself.

Among the above mentioned repetition-aware compression techniques, LZ77 has
been shown to be more efficient than both grammar-compression [9] and run-length
encoding of the Burrows-Wheeler transform (RLBWT) [6]. For this reason, much re-
search is focusing into methods to efficiently build, access, and index LZ77-compressed
text [8, 10]. A major concern while computing LZ77 and building LZ77-based self-
indexes is to use limited working space. This is particular concerning in situations
where the input text is highly repetitive: in these domains, algorithms working in
space Θ(n log n) [11], O(n log |Σ|) [12, 13], or even O(nHk) [14, 15] bits are of little

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/80136651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

use as they could be exponentially more memory-demanding than the final com-
pressed representation. Very recent results suggested that it is possible to achieve
these goals in repetition-aware working space. Let z be the number of phrases of
the LZ77 parse. Gagie [16] proposed a randomized algorithm to compute in O(n1+ε)
time and O(z/ε) words of space an approximation of the parsing consisting of O(z/ε)
phrases, where 0 < ε ≤ 1. Nishimoto et al. in [17] show how to build the LZ77
parsing in O(z log n log∗ n) words of space.

In this work, we focus on the measure of repetitiveness R: the number of equal-
letter runs in the BWT of the (reversed) text. Several works [4–6] studied the em-
pirical behavior of R on highly repetitive text collections, suggesting that on such
instances R grows at the same rate as z. Let Σ = {s1, . . . , sσ} be the alphabet. Both
z and R are at least σ and can be Θ(σ), e.g. in the text (s1s2 . . . sσ)e, e > 0. However,
the rate R/z can be Θ(logσ n): this happens, for example, for de Bruijn sequences
(of order k > 1). In this paper, we show how to build the LZ77 parsing of a text T in
space bounded by the numberR of runs in the BWT of T reversed. The main obstacle
in computing the LZ77 parsing with a RLBWT index within repetition-aware space
is the suffix array (SA) sampling: by sampling the SA at regular text positions, this
structure requires O((n/k) log n) bits of working space and supports locate queries in
time proportional to k (for any 0 < k ≤ n). In this work we prove that—in order
to compute the LZ77 parsing—it is sufficient to store at most two samples per BWT
run, therefore reducing the sampling size to O(R log n) bits. Our algorithm reads
the text only once from left to right in O(logR) time per character (which makes
it useful also in the streaming model). After reading the text, O(n logR) additional
time is required in order to output the LZ77 phrases in text-order (the parsing itself
is not stored in main memory). The total space usage is O(R log n) bits.

A consequence of our result is that a class of repetition-aware self-indexes—
described in [6]—combining LZ77 and RLBWT can be built in asymptotically op-
timal O(z + R) words of working space. The only other known repetition-aware
index that can be built in asymptotically optimal working space is based on grammar
compression and is described in [18].

Notation

For space constraints we assume the reader to be familiar with the notions related to
BWT -based self indexing: backward search, LF mapping, suffix array sampling.

Let our input text be of the form T = #T ′$ ∈ Σn, with T ′ ∈ (Σ \ {$,#})n−2,
$ LZ77-terminator, and #—lexicographically smaller than all elements in Σ—BWT-
terminator1.

The LZ77 parsing (or factorization) of a text T is the stream of z phrases (or
factors)

〈π1, λ1, c1〉 . . . 〈πi, λi, ci〉 . . . 〈πz, λz, cz〉,

where πi ∈ {0, . . . , n − 1} ∪ {⊥} and ⊥ stands for “undefined”, λi ∈ {0, . . . , n − 2},
ci ∈ Σ, and:

1We put # in first position since we will build the BWT of the reverse of T . Adding # to our
input increases only by one the number of output LZ77 factors.

1. T = ω1c1 . . . ωzcz, with ωi = ε if λi = 0 and ωi = T [πi, . . . , πi+λi−1] otherwise.

2. For any i = 1, . . . , z, ωi is the longest prefix of ωici . . . ωzcz that occurs at least
twice in ω1c1 . . . ωi

The notation
←−
S indicates the reverse of the string S ∈ Σ∗. All BWT intervals

are inclusive, and we denote them as [l, r] (left-right positions on the BWT). An
(equal-letter) a-run in a string S is a maximal single-character a substring of S.

A substring V of a string S ∈ Σ∗ is right-maximal if there exist two distinct
characters a 6= b, a, b ∈ Σ such that both V a and V b are substrings of S.

Algorithm

We now describe our algorithm, deferring a detailed description of the employed data
structures to the next section. The main data structure we use is a dynamic RLBWT

of the text
←−
T . The algorithm works in two phases.

In the first phase, we read T from left to right, building a RLBWT representation

of
←−
T . This step employs a well-known online BWT construction algorithm which

requires a dynamic string data structure D to represent the BWT. The algorithm
performs a total amount of |T | rank and insert operations on D (see, e.g., [15] for
a detailed description of the procedure). In our case, D will be designed to be also
run-length compressed (see next section for all technicalities).

In the second phase, the algorithm scans T left to right once more, this time using
the BWT just built—i.e. by repeatedly using the LF mapping on the entire BWT of←−
T starting from T [0]— and outputs the LZ77 factors.

While reading T [j] for j > 0 in the second phase, we must determine whether
T [i, . . . , j], with i first position of the current LZ-phrase, occurs in T [0, . . . , j − 1]. If
this is not the case, then we output the LZ triple 〈π, j−i, T [j]〉, where π corresponds to
the source of the current LZ-phrase (and, hence, T [π, . . . , π+j−i−1] = T [i, . . . , j−1]
and π = ⊥ in case i = j). The computation must be performed on an index for the
entire text.

In the following we show how to implement our algorithm in O(R log n) bits of
working space, by maintaining σ dynamic sets equipped with a total of O(R) SA-
samples.

Dynamic Suffix Array Sampling

From now on BWT stands for the Burrows-Wheeler transform of
←−
T . Note that,

even though we say that we sample the suffix array, we actually sample text positions
associated with BWT positions, i.e. we sample T -positions on the L-column instead
of T -positions on the F -column of the BWT matrix. Moreover, since we enumerate

positions in T -order (not
←−
T -order), k-th BWT-position will correspond to sample

(n − SA[k]) mod n, where SA[k] is the k-th entry in the (standard) suffix array of
←−
T .

Let j be a T -position and k its corresponding BWT-position: T [j] = BWT [k].
We store SA-samples as pairs 〈j, k〉 and each pair is of one of three types: singleton,

denoted as 〈j, k〉◦, open, denoted as [〈j, k〉, and close, denoted as 〈j, k〉]. If the pair
type is not relevant for the discussion, we simply write 〈j, k〉.

Let Σ = {s1, . . . , sσ} be the alphabet. Samples are stored in σ red-black trees
Bs1 , . . . ,Bsσ and are ordered by BWT coordinate (i.e. the second component of the
pairs). While reading a = T [j] = BWT [k] we first locate the (inclusive) bounds
l ≤ k ≤ r of its associated BWT a-run, then we update the trees according to the
following rules:

(A) If for all 〈j′, k′〉 ∈ Ba, k′ /∈ [l, r], then we insert the singleton 〈j, k〉◦ in Ba.

(B) If there exists 〈j′, k′〉◦ ∈ Ba such that k′ ∈ [l, r], then we remove it and:

(a) If k < k′, then we insert in Ba the pairs [〈j, k〉 and 〈j′, k′〉],

(b) If k′ < k, then we insert in Ba the pairs [〈j′, k′〉 and 〈j, k〉].

(C) If there exist [〈j′, k′〉, 〈j′′, k′′〉] ∈ Ba such that k′, k′′ ∈ [l, r]:

(a) If k < k′ < k′′, then we remove [〈j′, k′〉 from Ba and insert [〈j, k〉 in Ba,

(b) If k′ < k′′ < k, then we remove 〈j′′, k′′〉] from Ba and insert 〈j, k〉] in Ba,

(c) Otherwise (k′ < k < k′′), we leave the trees unchanged.

We say that a BWT a-run BWT [l, . . . , r] contains a pair or, equivalently, contains a
SA-sample, if there exists some 〈j, k〉 ∈ Ba such that k ∈ [l, r]. It is easy to see that
the following invariants hold for the above three rules: (i) each BWT run contains
either no pairs, a singleton pair, or two pairs—one open and one close; (ii) If a BWT

run contains an open [〈j′, k′〉 and a close 〈j′′, k′′〉] pair, then k′ < k′′; (iii) once we add
a SA-sample inside a BWT run, that run will always contain at least one SA-sample.

We say that BWT-position k is marked by SA-sample 〈j, k〉, when a = T [j] =
BWT [k] and 〈j, k〉 ∈ Ba.

Let BWT [k#] = #. By saying that T -positions 0, . . . , j have been processed, we
mean that—starting with all trees empty—we have applied the update rules to the
SA-samples 〈0, k#〉, 〈1, BWT.LF (k#)〉, 〈2, BWT.LF 2(k#)〉, . . . , 〈j, BWT.LF j(k#)〉,
where BWT.LF i(k#) denotes i applications of the LF map starting from BWT-
position k#. We now prove that, after processing 0, . . . , j, we can locate at least one
occurrence of any string that occurs in T [0, . . . , j]. This property will allow us to
locate LZ phrase boundaries and previous occurrences of LZ phrases.

Lemma 1. If 0, . . . , j have been processed and [l, r] is the BWT interval associated

with
←−
V ∈ Σm, with V right-maximal in T , then

∃〈j′, k′〉 ∈ Ba such that k′ ∈ [l, r] if and only if Va occurs in T [0, . . . , j].

Proof. (⇒) If 〈j′, k′〉 ∈ Ba with k′ ∈ [l, r] exists, then clearly T [j′ −m, . . . , j′] = V a.
Moreover, since we processed T -positions 0, . . . , j only, it must be the case that j′ ≤ j
and hence Va occurs in T [0, . . . , j].

(⇐) Let T [t, . . . , t + m] = V a, with t ≤ j −m. Consider the BWT a-run corre-
sponding to T [t+m] = a. One of the following cases can hold true:

(1) The BWT a-run is entirely included in BWT [l, . . . , r] and is neither a prefix
nor a suffix of BWT [l, . . . , r], that is BWT [l, . . . , r] = XcaedY , for some X, Y ∈
Σ∗, c, d 6= a, e > 0. Then, it follows from invariant (iii) and rule (A) that since we
have visited T -position t + m, the a-run must contain at least one SA-sample. This
is the pair 〈j′, k′〉 we are looking for.

(2) The BWT a-run spans either position l or position r. Since V is right-maximal
in T , then BWT [l, . . . , r] contains also a character b 6= a. We therefore have that
either (i) BWT [l, . . . , r] = aeXbY , or (ii) BWT [l, . . . , r] = Y bXae, where X, Y ∈
Σ∗, e > 0. The two cases are symmetric hence we discuss only (i).

Consider all T -prefixes T [0, . . . , j′′] such that j′′ ≤ j, Va is a suffix of T [0, . . . , j′′],

and the lexicographic rank of
←−−−−−−−−−−
T [0, . . . , j′′ − 1] among all

←−
T -suffixes is k′′ ∈ [l, l+e−1]

(i.e. the suffix lies in BWT [l, . . . , l + e− 1] = ae). There exists at least one such T -
prefix: T [0, . . . , t+m]. Then, it is easy to see that the rank k′ of the lexicographically

largest
←−
T -suffix with the above properties is such that 〈j′, k′〉 ∈ Ba for some j′ ≤ j.

This is implied by the three update rules described above. The BWT position k
corresponding to T -position t + m lies in the BWT interval [l, l + e − 1], therefore
either (i) k is the rightmost position visited in its run (and it is marked with a
SA-sample), or (ii) the rightmost visited position k′ > k in [l, l + e − 1] is marked
with a SA-sample (note that lexicographically largest translates to rightmost on BWT
intervals).

We can drop the right-maximality requirement from Lemma 1.

Corollary 1. Once processed T -positions 0, . . . , j−1 (none if j = 0), after processing
also j, . . . , j +m− 1, m > 0, if a string W ∈ Σm occurs in T [0, . . . , j +m− 1], then
we can locate one of its occurrences.

Proof. We prove the property by induction on |W | = m > 0. Let W = Va, V ∈
Σm−1, a ∈ Σ. If m = 1, then V = ε (empty string). Since T contains at least two
distinct characters (a and #), V is right-maximal. Therefore we can apply Lemma 1
to find an occurrence of W = a.

If m > 1, then |V | > 0 and two cases can occur. If V is right-maximal, then we
can again apply Lemma 1 to find an occurrence of W = Va in T [0, . . . , j + m − 1]
(remember that Va occurs in T [0, . . . , j+m−1]). If, instead, V is not right-maximal,
then it is always followed by a in T . By inductive hypothesis we can locate an
occurrence π of V in T [0, . . . , j + m − 2]. But then, since all occurrences of V in T
are followed by a, π is also an occurrence of W = Va in T [0, . . . , j +m− 1].

Pseudocode

Our complete procedure is reported as Algorithm 1. In line 1 we build the RLBWT

of
←−
T using the online algorithm mentioned at the beginning of this section and

employing a dynamic run-length encoded string data structure to represent the BWT.
This is the only step requiring access to the input text, which is read only once from
left to right. Since the dynamic string we use is run-length compressed, this step
requires O(R log n) bits of working space.

From lines 2 to 9 we initialize all variables. In order: the text length n, the current
position j in T , the position k in RLBWT corresponding to position j in T (at the
beginning, T [0] = RLBWT [k#] = #), the current LZ77 phrase prefix length λ (last
character T [j] excluded), the T -position π < j at which the current phrase prefix
T [j − λ, . . . , j − 1] occurs (π = ⊥ if λ = 0), the red-black trees Bs1 , . . . ,Bsσ used
to store SA-samples, the current character c = T [j] = RLBWT [k], and the interval

[l, r] corresponding to the current reversed LZ phrase prefix
←−−−−−−−−−−−−−
T [j − λ, . . . , j − 1] in

RLBWT (when λ = 0, [l, r] is the full interval [0, n− 1]).
The while loop on line 10 scans T positions from the first to last. First of all,

we have to discover if the current character T [j] = c ends a LZ phrase. In line 11
we count the number u of runs that intersect interval [l, r] on RLBWT . If u = 1,
then the current phrase prefix T [j − λ, . . . , j − 1] is always followed by c in T (i.e.
it is not right-maximal), and consequently T [j] cannot be the last character of the
current LZ phrase. Otherwise, by Lemma 1 T [j−λ, . . . , j] occurs in T [0, . . . , j− 1] if
and only if there exists a SA-sample 〈j′, k′〉 ∈ Bc such that l ≤ k′ ≤ r. The existence
of such pair can be verified with a binary search on the red-black tree Bc. In line
12 we perform these two tests. If at least one of these two conditions holds, then
T [j − λ, . . . , j] occurs in T [0, . . . , j − 1] and therefore it is not a LZ phrase. If this is
the case, we now have to find π < j − λ such that T [π, . . . , π + λ] = T [j − λ, . . . , j]
(i.e. a previous occurrence of the current LZ phrase prefix). The implementation of
this task follows the inductive proof of Corollary 1. If u = 1 (current phrase prefix is
not right-maximal) then π is already the value we need. Otherwise (Lines 13-14) we
find a SA-sample 〈j′, k′〉 ∈ Bc such that k′ ∈ [l, r] (such pair must exist since u > 1
and the condition in Line 12 succeeded). Procedure Bc.locate(l, r) returns such j′

(to make the procedure deterministic, one could return the value j′ associated with
the smallest BWT position k′ ∈ [l, r]). Then, we assign to π the value j′ − λ (Line
14). We can now increment the current LZ phrase prefix length (Line 15) and update

the BWT interval [l, r] so that it corresponds to the string
←−−−−−−−−−−−−−
T [j − λ+ 1, . . . , j] (LF

mapping in Line 16).
If both the conditions at line 12 fail, then the string T [j−λ, . . . , j] does not occur in

T [0, . . . , j− 1] and therefore is a LZ phrase. By the inductive hypothesis of Corollary
1, π < j−λ is either ⊥—if λ = 0—or such that T [π, . . . , π+λ−1] = T [j−λ, . . . , j−1]
otherwise. At line 18 we can therefore output the LZ factor. We now have to open
(and start searching in RLBWT) a new LZ phrase: at lines 19-21 we reset the current
phrase prefix length, set π to ⊥, and reset the interval associated to the current
(reversed) phrase prefix to the full interval.

All we are left to do now is to process position j (i.e. apply the update rules to
the SA-sample 〈j, k〉) and proceed to the next text position. At line 22 we locate
the (inclusive) borders [lrun, rrun] of the BWT run containing position k (i.e. k ∈
[lrun, rrun]). This information is used at line 23 to apply the update rules on Bc

and on the SA-sample 〈j, k〉. Finally, we increment the current T -position j (line
24), compute the corresponding position k on RLBWT (line 25), and read the next
T -character c on the RLBWT.

Algorithm 1: LZ77 in RLE space(T)

input : A text T ∈ Σn beginning with # and ending with $
output: LZ77 factors of T in text order.

1 RLBWT ← build rev RLBWT (T); /* Build online the RLBWT of
←−
T */

2 n← |T |; /* T length */

3 j ← 0 ; /* Last position (on T) of current LZ phrase prefix */

4 k ← k# ; /* Position of # in RLBWT */

5 λ← 0; /* Length of current LZ phrase prefix */

6 π ← ⊥; /* Previous occurrence of current LZ phrase prefix */

7 Bs1 , . . . ,Bsσ ← ∅; /* Initialize red-black trees of SA-samples */

8 c← RLBWT [k]; /* Current T character */

9 [l, r]← [0, n− 1]; /* Range of current LZ phrase prefix in RLBWT */

10 while j < n do

11 u← RLBWT.number of runs(l, r); /* Runs intersecting [l, r] */

12 if u = 1 or Bc.exists sample(l, r) then

13 if u > 1 then
14 π ← Bc.locate(l, r)− λ; /* Occurrence of phrase prefix */

15 λ← λ+ 1; /* Increase length of current LZ phrase */

16 [l, r]← RLBWT.LF ([l, r], c); /* Backward search step */

17 else
18 Output 〈π, λ, c〉; /* Output LZ77 factor */

19 λ← 0; /* Reset phrase prefix length */

20 π ← ⊥; /* Reset phrase prefix occurrence */

21 [l, r]← [0, n− 1]; /* Reset range of current LZ phrase prefix */

22 [lrun, rrun]← RLBWT.locate run(k) ; /* run of BWT position k */

23 Bc.update tree(〈j, k〉, [lrun, rrun]); /* Apply update rules */

24 j ← j + 1; /* Increment T position */

25 k ← RLBWT.LF (k); /* RLBWT position corresponding to j */

26 c← RLBWT [k]; /* Read next T character */

Structures

Below we illustrate how to efficiently implement the dynamic RLBWT data structure
used in Line 1 of Algorithm 1. We adopt the general approach of [4], that is run-
length encoding of the FM index. We store one character per run in a string H ∈ ΣR,

we mark the beginning of the runs with a 1 in a bit-vector Vall[0, . . . , n− 1], and for
every c ∈ Σ we store all c-runs lengths consecutively in a bit-vector Vc as follows:
every m-length c-run is represented in Vc as 10m−1. For example, letting BWT =
bc#bbbbccccbaaaaaaaaaaa, we have H = bc#bcba, Vall = 11110001000110000000000,
Va = 10000000000, Vb = 110001, and Vc = 11000 (V# is always 1). Then, rank/access
on the BWT are reduced to rank/select/access on H, Vall, and Vc. The structure takes
O(R log n) bits of space if all bit-vectors are gap-encoded and supports the insertion
of character c in the BWT, by (possibly) one character insertion in H followed by a
constant number of rank, select, insertions and deletions of 0-bits in Vall and Vc. We
leave details to the reader.

All structures are implemented as dynamic. For H we can use the result in [19],
guaranteeing O(R log n) bits of space (in [19] there is an extra O(σ logR) spatial term
which however amounts to O(R log n) bits since σ ≤ R ≤ n) and O(logR)-time rank,
select, access, and insert. We can reduce dynamic gap-encoded bit-vectors to the so-
called Searchable Partial Sums with Indels (SPSI) problem. The SPSI asks for a data
structure PS to maintain a sequence s1, . . . , sm of non-negative k-bits integers (in our
case, k ∈ Θ(log n), n being the text length), supporting the following operations:

• PS.sum(i) =
∑i

j=1 sj;

• PS.search(x) is the smallest i such that
∑i

j=1 sj ≥ x;

• PS.update(i, δ): update si to si + δ. δ can be negative as long as si + δ ≥ 0;

• PS.insert(i): insert 0 between si−1 and si (if i = 0, insert in first position).

Below (section SPSI implementation) we briefly outline how to implement PS in
O(m · k) bits of space with O(logm) time-cost for each of the above operations.

Hence, a length-n bit-vector B = 10s1−110s2−1 . . . 10sm−1 (si > 0) can be encoded
in O(m log n) bits of space with a partial sum PS on the sequence s1, . . . , sm. We
need to show how to answer the following queries on B: B[i] (access), B.rank(i) =∑i

j=0B[j], B.select(i) (the position j such that B[j] = 1 and B.rank(j) = i),
B.insert(i, b) (insert bit b ∈ {0, 1} between positions i − 1 and i), and B.delete0(i),
where B[i] = 0 (delete B[i]).

It is easy to see that rank/access and select operations on B reduce to search and
sum operations on PS, respectively. B.delete0(i) requires just a search and an update
on PS. To support insert on B, we can operate as follows: B.insert(i, 0), i > 0, is
implemented with PS.update(PS.search(i), 1). B.insert(0, 1) is implemented with
PS.insert(0) followed by PS.update(0, 1). B.insert(i, 1), i > 0, “splits” an integer
into two integers: let j = PS.search(i) and δ = PS.sum(j)− i. We first decrease sj
with PS.update(j,−δ). Then, we insert a new integer δ + 1 with PS.insert(j + 1)
and PS.update(j + 1, δ + 1).

SPSI implementation

In our case, the bit-length of the integers in each of our PS-structures is k ∈ Θ(log n).
We can use O(m · k) = O(m log n) bits of space by employing red-black trees (RBT).

We store s1, . . . , sm in the leaves of a RBT and we store in each internal node of the
tree the number of nodes and partial sum of its subtrees. Sum and search queries can
then be easily implemented with a traversal of the tree from the root to the target
leaf. Update queries require finding the integer (leaf) of interest and then updating
O(logm) partial sums while climbing the tree from the leaf to the root. Finally,
insert queries require finding an integer (leaf) si immediately preceding or following
the insert position, substituting it with an internal node with two children leaves si
and 0 (the order depending on the insert position—before or after si), incrementing
by one O(logm) subtree-size counters while climbing the tree up to the root, and
applying the RBT update rules. This last step requires the modification of O(1)
counters (subtree-size/partial sum) if RBT rotations are involved. All operations
take O(logm) time.

Analysis

It is easy to see that rank, access, and insert operations on RLBWT take O(logR)
time each. Operations Bc.exists sample(l, r) (line 12) and Bc.locate(l, r) (Line 14)
require just a binary search on the red-black tree of interest and can also be imple-
mented in O(logR) time. RLBWT.number of runs(l, r) is the number of bits set
in Vall[l, . . . , r], plus 1 if Vall[l] = 0: this operation requires therefore O(1) rank/access
operations on Vall (O(logR) time). Similarly, RLBWT.locate run(k) requires find-
ing the two bits set preceding and following position k in Vall (O(logR) time with a
constant number of rank and select operations). We obtain:

Theorem 1. Algorithm 1 computes the LZ77 factorization of a text T ∈ Σn in
O(R log n) bits of working space and O(n logR) time, R being the number of runs in

the Burrows-Wheeler transform of
←−
T .

As a direct consequence of Theorem 1, we obtain an asymptotically optimal-space
construction algorithm for a class of repetition-aware indexes [6] combining a RLBWT
with the LZ77 factorization. The main idea behind this class of indexes is to use a
RLBWT structure on

←−
T to compute the lexicographic order of the reversed LZ77

T -factors and of the T -suffixes starting at LZ77 phrase boundaries. This, combined
with two geometric range data structures, permits to efficiently count and locate
pattern occurrences in T within O(R + z) words of space (see [6] for full details).

The construction of such indexes requires building the RLBWT of
←−
T , computing the

LZ77 factorization of T , and building additional structures ofO(z) words of space. We
observe that with our algorithm all these steps can be carried out in O(R+ z) words
of working space, which is (asymptotically) the same space of the index described
in [6].

References

[1] Travis Gagie, “Large alphabets and incompressibility,” Information Processing Letters,
vol. 99, no. 6, pp. 246–251, 2006.

[2] Jacob Ziv and Abraham Lempel, “A universal algorithm for sequential data compres-
sion,” IEEE Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977.

[3] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit
Sahai, and Abhi Shelat, “The smallest grammar problem,” Information Theory, IEEE
Transactions on, vol. 51, no. 7, pp. 2554–2576, 2005.

[4] Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro, “Run-length com-
pressed indexes are superior for highly repetitive sequence collections,” in String Pro-
cessing and Information Retrieval. Springer, 2009, pp. 164–175.

[5] Jouni Sirén et al., Compressed full-text indexes for highly repetitive collections, Ph.D.
thesis, 2012.

[6] Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot,
“Composite repetition-aware data structures,” in Proc. CPM, 2015, pp. 26–39.

[7] Francisco Claude and Gonzalo Navarro, “Self-indexed grammar-based compression,”
Fundamenta Informaticae, vol. 111, no. 3, pp. 313–337, 2011.

[8] Sebastian Kreft and Gonzalo Navarro, “Self-indexing based on LZ77,” in Combinatorial
Pattern Matching. Springer, 2011, pp. 41–54.

[9] Wojciech Rytter, “Application of lempel–ziv factorization to the approximation of
grammar-based compression,” Theoretical Computer Science, vol. 302, no. 1, pp. 211–
222, 2003.

[10] Djamal Belazzougui, Travis Gagie, Pawe l Gawrychowski, Juha Kärkkäinen, Alberto
Ordónez, Simon J Puglisi, and Yasuo Tabei, “Queries on lz-bounded encodings,”
arXiv preprint arXiv:1412.0967, 2014.

[11] Maxime Crochemore and Lucian Ilie, “Computing longest previous factor in linear
time and applications,” Information Processing Letters, vol. 106, no. 2, pp. 75–80,
2008.

[12] Enno Ohlebusch and Simon Gog, “Lempel-Ziv factorization revisited,” in Combinato-
rial Pattern Matching. Springer, 2011, pp. 15–26.

[13] Djamal Belazzougui and Simon J Puglisi, “Range Predecessor and Lempel-Ziv Pars-
ing,” arXiv preprint arXiv:1507.07080, 2015.

[14] Sebastian Kreft and Gonzalo Navarro, “Self-index based on LZ77 (Ph.D. thesis),”
arXiv preprint arXiv:1112.4578, 2011.

[15] Alberto Policriti and Nicola Prezza, “Fast online lempel-ziv factorization in compressed
space,” in String Processing and Information Retrieval, vol. 9309 of Lecture Notes in
Computer Science, pp. 13–20. Springer International Publishing, 2015.

[16] Travis Gagie, “Approximating lz77 in small space,” arXiv preprint arXiv:1503.02416,
2015.

[17] Takaaki Nishimoto, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda, et al., “Dy-
namic index, LZ factorization, and lce queries in compressed space,” arXiv preprint
arXiv:1504.06954, 2015.

[18] Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto, “Online self-indexed
grammar compression,” in proc. SPIRE, vol. 9309 of Lecture Notes in Computer Sci-
ence, pp. 258–269. Springer International Publishing, 2015.

[19] Gonzalo Navarro and Yakov Nekrich, “Optimal dynamic sequence representations,”
SIAM Journal on Computing, vol. 43, no. 5, pp. 1781–1806, 2014.

