19 research outputs found

    Applications to cancer research of "lab-on-a-chip" devices based on dielectrophoresis (DEP).

    Get PDF
    The recent development of advanced analytical and bioseparation methodologies based on microarrays and biosensors is one of the strategic objectives of the so-called post-genomic. In this field, the development of microfabricated devices could bring new opportunities in several application fields, such as predictive oncology, diagnostics and anti-tumor drug research. The so called "Laboratory-on-a-chip technology", involving miniaturisation of analytical procedures, is expected to enable highly complex laboratory testing to move from the central laboratory into non-laboratory settings. The main advantages of Lab-on-a-chip devices are integration of multiple steps of different analytical procedures, large variety of applications, sub-microliter consumption of reagents and samples, and portability. One of the requirement for new generation Lab-on-a-chip devices is the possibility to be independent from additional preparative/analytical instruments. Ideally, Lab-on-a-chip devices should be able to perform with high efficiency and reproducibility both actuating and sensing procedures. In this review, we discuss applications of dielectrophoretic(DEP)-based Lab-on-a-chip devices to cancer research. The theory of dielectrophoresis as well as the description of several devices, based on spiral-shaped, parallel and arrayed electrodes are here presented. In addition, in this review we describe manipulation of cancer cells using advanced DEP-based Lab-on-a-chip devices in the absence of fluid flow and with the integration of both actuating and sensing procedures

    Molecular profiling of single circulating tumor cells with diagnostic intention

    Get PDF
    Several hundred clinical trials currently explore the role of circulating tumor cell (CTC) analysis for therapy decisions, but assays are lacking for comprehensive molecular characterization of CTCs with diagnostic precision. We therefore combined a workflow for enrichment and isolation of pure CTCs with a non-random whole genome amplification method for single cells and applied it to 510 single CTCs and 189 leukocytes of 66 CTC-positive breast cancer patients. We defined a genome integrity index (GII) to identify single cells suited for molecular characterization by different molecular assays, such as diagnostic profiling of point mutations, gene amplifications and whole genomes of single cells. The reliability of >90% for successful molecular analysis of high-quality clinical samples selected by the GII enabled assessing the molecular heterogeneity of single CTCs of metastatic breast cancer patients. We readily identified genomic disparity of potentially high relevance between primary tumors and CTCs. Microheterogeneity analysis among individual CTCs uncovered pre-existing cells resistant to ERBB2-targeted therapies suggesting ongoing microevolution at late-stage disease whose exploration may provide essential information for personalized treatment decisions and shed light into mechanisms of acquired drug resistance

    Genetic Characterization of Cancer of Unknown Primary Using Liquid Biopsy Approaches

    Get PDF
    Cancers of unknown primary (CUPs) comprise a heterogeneous group of rare metastatic tumors whose primary site cannot be identified after extensive clinical–pathological investigations. CUP patients are generally treated with empirical chemotherapy and have dismal prognosis. As recently reported, CUP genome presents potentially druggable alterations for which targeted therapies could be proposed. The paucity of tumor tissue, as well as the difficult DNA testing and the lack of dedicated panels for target gene sequencing are further relevant limitations. Here, we propose that circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) could be used to identify actionable mutations in CUP patients. Blood was longitudinally collected from two CUP patients. CTCs were isolated with CELLSEARCH® and DEPArrayTM NxT and Parsortix systems, immunophenotypically characterized and used for single-cell genomic characterization with Ampli1TM kits. Circulating cell-free DNA (ccfDNA), purified from plasma at different time points, was tested for tumor mutations with a CUP-dedicated, 92-gene custom panel using SureSelect Target Enrichment technology. In parallel, FFPE tumor tissue was analyzed with three different assays: FoundationOne CDx assay, DEPArray LibPrep and OncoSeek Panel, and the SureSelect custom panel. These approaches identified the same mutations, when the gene was covered by the panel, with the exception of an insertion in APC gene. which was detected by OncoSeek and SureSelect panels but not FoundationOne. FGFR2 and CCNE1 gene amplifications were detected in single CTCs, tumor tissue, and ccfDNAs in one patient. A somatic variant in ARID1A gene (p.R1276∗) was detected in the tumor tissue and ccfDNAs. The alterations were validated by Droplet Digital PCR in all ccfDNA samples collected during tumor evolution. CTCs from a second patient presented a pattern of recurrent amplifications in ASPM and SEPT9 genes and loss of FANCC. The 92-gene custom panel identified 16 non-synonymous somatic alterations in ccfDNA, including a deletion (I1485Rfs∗19) and a somatic mutation (p. A1487V) in ARID1A gene and a point mutation in FGFR2 gene (p.G384R). Our results support the feasibility of non-invasive liquid biopsy testing in CUP cases, either using ctDNA or CTCs, to identify CUP genetic alterations with broad NGS panels covering the most frequently mutated genes

    Analog fuzzy implementation of a vehicle traction sliding-mode control

    No full text
    Road adherence is an imprecise function of many parameters strongly affected by road conditions. In this paper, we propose a very robust control with a static nonlinear feedback law which can consider adherence and other model uncertainties, regulating the wheel slip at any desired value with good precision properties. A sliding-mode control has been designed to provide stability and reliability. Once designed, the control surface has been fuzzified and implemented with a programmable analog fuzzy circuit which uses a 0.7 mu m CMOS technology provided by SGS-Thomson Microelectronics. This implementation is carried out with a semi-automatic design flow and features high computational efficiency at it very low cost, especially when compared to a digital one. Moreover, the controller response time is less than 1 mu s. A flexible control of the slip coefficient has been performed. Results show that the desired slip coefficient is reached and kept with good approximation in compliance with theoretical results

    A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products

    Get PDF
    <div><p>Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent<sup>™</sup> platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the <i>Ampli</i>1<sup>™</sup> WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.</p></div
    corecore