17 research outputs found

    Interacciones plasmónicas en nanoestructuras multicomponentes

    Get PDF
    Tesis (Doctor en Ciencias Químicas) - - Universidad Nacional de Córdoba. Facultad de Ciencias Químicas, 2017Esta tesis doctoral fué desarrollada íntegramente en la Facultad de Ciencias Químicas de la Universidad Nacional de Córdoba, bajo la dirección del Dr. Eduardo A. Coronado. La misma es un compendio de estudios de distintas nanoestructuras plasmónicas que se caracterizan por estar compuestas por mas de un material, es decir son nanoestructuras híbridas o multicomponentes. Este hecho les conere propiedades ópticas muy particulares, que son el foco de interés para diversas aplicaciones incluyendo las espectroscopías incrementadas, que constituyen uno de los tópicos mas relevantes en esta tesis. Los sistemas estudiados tienen distintas arquitecturas ya que se pretende estudiar la interacción de los distintos materiales que las componen en función de su morfología y la distancia (o contacto) entre sus bloques estructurantes, que son los parámetros que controlarán la respuesta óptica de campo cercano y lejano frente a la irradiación con luz a una dada frecuencia. Los sistemas abordados en este trabajo de tesis simulan nanoestructuras plasmónicas que pueden ser obtenidas mediante el uso de métodos de la química coloidal y de litografía.Presentamos un modelado geométrico de cada sistema, en acuerdo con imágenes de microscopía de bibliografía experimental. La respuesta óptica de cada sistema abordado puede ser entendida mediante modelos analíticos o métodos de calculo numérico dependiendo de su geometría. En los casos estudiados con modelos analíticos nos centramos en describir la fotofísica de nuevos fenómenos emergentes de la interacción de los distintos componentes del sistema, en función de sus variables geométricas. En los demás sistemas el costo computacional de la solución numérica es alto, por lo que modelamos los resultados de experimentos puntuales de medidas de microscopía y espectroscopía.Fil: Passarelli, Nicolás. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Coronado, Eduardo Andrés. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina.Fil: Coronado, Eduardo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Veglia, Alicia Viviana. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina.Fil: Veglia, Alicia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Pérez, Manuel Alejo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina.Fil: Pérez, Manuel Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Fil: Sánchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Interdisciplinario de Ciencias Básicas; Argentina.Fil: Scaffardi, Lucia B. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina

    Lasing Conditions of Transverse Electromagnetic Modes in Metallic-Coated Micro- and Nanotubes

    Get PDF
    In this work, we study the lasing conditions of the transverse electric (TE) modes of micro- and nanotubes coated internally with a thin metallic layer. This geometry may tackle some of the problems of nanolasers and spasers as it allows the recycling of the active medium while providing a tunable plasmonic cavity. The system presents two types of TE modes: cavity modes (CMs) and whispering-gallery modes (WGMs). On the one hand, we show that the lasing of WGM is only possible in nanoscale tubes. On the other hand, for tubes of some micrometers of diameter, we found that the system presents a large number of CMs with lasing frequencies within the visible and near-infrared spectrum and very low gain thresholds. Moreover, the lasing frequencies of CMs can be accurately described by a simple one-parameter model. Our results may be useful in the design of micro- and nanolasers for "lab-on-chip" devices, ultradense data storage, nanolithography, or sensing.Fil: Passarelli, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Bustos Marun, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Spaser and Optical Amplification Conditions in Graphene-Coated Active Wires

    Full text link
    This work analyzes the optical properties of a localized surface plasmon (LSP) spaser made of a dielectric active wire coated with a graphene monolayer. Our theoretical results, obtained by using rigorous electromagnetic methods, illustrate the non-radiative transfer between the active medium and the localized surface plasmons of the graphene. In particular, we focus on the lasing conditions and the tunability of the LSP spaser in two cases: when the wire is made of an infrared/THz transparent dielectric material and when it is made of a metal-like material. We analyze the results by comparing them with analytical expressions obtained by us using the quasistatic approximation. We show that the studied systems present a high tunability of the spaser resonances with the geometrical parameters as well as with the chemical potential of the graphene

    Plasmon enhanced light absorption in aluminium@Hematite core shell hybrid nanocylinders: the critical role of length

    No full text
    The light absorption as well as the near field enhancements properties of Al@α-Fe2O3 core shell hybrid nanocylinders (HNs) have been systematically studied by means of Discrete Dipole Approximation simulations. The Al@α-Fe2O3 HNs consist of a right circular cylinder Al core, wrapped by a circular section of an α-Fe2O3 shell, both having the same finite length L. A general and useful methodology has been implemented to assess separately the partial contributions to the absorption spectrum of each component of the Al@α-Fe2O3 HN. The employed methodology can be applied not only to those HNs studied here but also to any other nanostructure with arbitrary geometry and several components providing relevant information not accessible through standard spectroscopic techniques. The absorption spectra have been employed to calculate the absorbed photon flux ϕ within the α-Fe2O3 shell. According to the HN size, plasmon enhanced light absorption in the α-Fe2O3 shell of the Al@α-Fe2O3 HNs is evidenced, which is attributed to a plasmon-induced energy transfer mechanism based on near field enhancements. The effect of the HN length on the absorbed photon flux ϕ is an important issue that has not been addressed yet, as only infinitely long HN has been considered in previous studies. It is demonstrated that the HN length L has a crucial influence on the absorbed photon flux ϕ, as it is the main structural parameter that allows us to tune the dipole plasmon resonance of the Al core into the visible region. Furthermore, it is shown that Al cores lead to larger ϕ values than the typical plasmonic metals Ag and Au. The results presented in this work point out that the HN length should be explicitly taken into account for an optimum design of core shell hybrid cylindrical nanostructures with enhanced or improved photoactive properties.Fil: Encina, Ezequiel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Passarelli, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Theoretical analysis of metallic-nanodimer thermoplasmonics for phototactic nanoswimmers

    No full text
    We assess the potentiality of several geometries of metallic nanodimers (one of the simplest thermoplasmonic systems) as candidates for active particles (nanoswimmers) propelled and controlled by light (phototaxis). The studied nanodimers are formed by two spherical nanoparticles of gold, silver, or copper with radii ranging from 20 to 100 nm. Contrary to most proposals, which assume the asymmetry of the systems as a requirement for self-propulsion, our results show that nanodimers made of identical nanoparticles are excellent candidates for phototactic self-thermophoretic systems. Nonsymmetrical nanodimers, although having a tunable effective diffusion, possess much lower or negligible average thermophoretic forces. We show that the effective diffusion and the net thermophoretic force in both types of systems depend strongly on the wavelength of the incident light, which makes these properties highly tunable. Our study may be useful for the design of simple-to-make but controllable self-propelled nanoparticles. This can find numerous applications ranging from autonomous drug-carrying to controlling the self-assembly of complex nanomaterials.Fil: Bertoni, Andrés Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Passarelli, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Bustos Marun, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin

    Spaser and optical amplification conditions in gold-coated active nanoparticles

    No full text
    Due to their many potential applications, there is an increasing interest in studying hybrid systems composed of optically active media and plasmonic metamaterials. In this work we focus on a particular system which consists of an optically active silica core covered by a gold shell. We find that the spaser (surface plasmon amplification by stimulated emission of radiation) conditions can be found at the poles of the scattering cross section of the system, a result that remains valid beyond the geometry studied. We explored a wide range of parameters that cover most of the usual experimental conditions in terms of the geometry of the system and the wavelength of excitation. We show that the conditions of spaser generation necessarily require full loss compensation, but the opposite is not necessarily true. Our results, which are independent of the detailed response of the active medium, provide the gain needed and the wavelength of the spasers that can be produced by a particular geometry, discussing also the possibility of turning the system into optical amplifiers and surface enhanced Raman spectroscopy substrates with huge enhancements. We believe that our results can find numerous applications. In particular, they can be useful for experimentalists studying similar systems in both tuning the experimental conditions and interpreting the results. (Figure Presented).Fil: Passarelli, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Bustos Marun, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Spaser and optical amplification conditions in graphene-coated active wires

    No full text
    This work analyzes the optical properties of a localized surface plasmon (LSP) spaser made of a dielectric active wire coated with a graphene monolayer. Our theoretical results, obtained by using rigorous electromagnetic methods, illustrate the non-radiative transfer between the active medium and the LSPs of graphene. In particular, we focus on the lasing conditions and the tunability of the LSP spaser in two cases: when the wire is made of an infrared/terahertz transparent dielectric material and when it is made of a metal-like material. We analyze the results by comparing them with analytical expressions obtained by using the quasistatic approximation. We show that the studied systems present a high tunability of the spaser resonances with the geometrical parameters as well as with the chemical potential of graphene.Secretaria de Ciencia y Tecnología-Universidad Nacional de Córdoba ; Consejo Nacional de Investigaciones Científicas y Técnicas ; Agencia Nacional de Promoción Científica y Tecnológica (PICT-2018-03587).Peer reviewe

    Engineering Plasmonic Colloidal Meta-Molecules for Tunable Photonic Supercrystals

    No full text
    Ordered arrays of metal nanoparticles offer new opportunities to engineer light–matter interactions through the hybridization of Rayleigh anomalies and localized surface plasmons. The generated surface lattice resonances exhibit much higher quality factors compared to those observed in isolated metal nanostructures. Template-induced colloidal self-assembly has already shown a great potential for the scalable fabrication of 2D plasmonic meta-molecule arrays, but the experimental challenge of controlling optical losses within the repeating units has so far prevented this approach to compete with more standard fabrication methods in the production of high-quality factor resonances. In this manuscript, the optical properties of plasmonic arrays are investigated by varying the lattice parameter (between 200 and 600 nm) as well as the diameter of the gold colloidal building-blocks (between 11 ± 1 and 98 ± 6 nm). It is systematically studied how the internal architecture of the repeating gold-nanoparticle meta-molecules influences the optical response of the plasmonic supercrystals. Combining both experimental measurements and simulations, it is demonstrated how, reducing the size of the gold nanoparticles it is possible to switch from strong near-field plasmonic architectures to high-quality factors (>60) for lattice plasmon resonances located in the visible spectral range.P.M. and N.P. contributed equally to this work. This project had received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 637116, ENLIGHTMENT) and the Spanish Ministerio de Ciencia e Innovación through grant, PID2019-106860GB-I00 and FUNFUTURE (CEX2019-000917-S), in the framework of the Spanish Severo Ochoa Centre of Excellence program. L.S. research was supported by the Marie Sklodowska-Curie Actions SHINE (H2020- MSCA-IF-2019, grant agreement no. 894847) and the 2020 Post-doctoral Junior Leader-Incoming Fellowship by “la Caixa” Foundation (ID 100010434, fellow-ship code LCF/BQ/PI20/11760028). L.A.P. thanks the Marie Sklodowska-Curie Actions (H2020-MSCA-IF-2018) for grant agreement no. 839402, PLASMIONICO. P.M. acknowledges financial support from an FPI contract (2017) of the MICINN (Spain) cofounded by the ESF and the UAB under the auspices of the UAB material science doctoral program.Peer reviewe

    Colloidal Silver Nanoparticle Plasmonic Arrays for Versatile Lasing Architectures via Template-Assisted Self-Assembly

    No full text
    The characteristic narrow spectral features of surface lattice resonances emerge as great candidates for the rational design of optical nanocavities targeting enhanced light-matter interaction, ultrasensitive detection, or efficient light-energy conversion. Traditional fabrication of metal arrays involves thermal evaporation and annealing steps, limiting scalability and adaptability. In contrast, template-assisted self-assembly provides a high-throughput all-around approach for implementing colloidal plasmonic metasurfaces on a variety of different materials. Here, the use of pre-synthesized silver nanoparticles is designed and tested for the construction of versatile lasing architectures. Plasmonic arrays are prepared directly on top of the gain media (a photoresist thin film doped with Rhodamine B), creating optical nanocavities with quality factors as high as 85. The proposed architecture circumvents the need for an index-matching superstrate to promote the generation of collective resonances, leaving the plasmonic surface accessible for post-assembly modification. Additionally, the angular dispersion of the metasurfaces is used to modify the angle of the lasing emission, achieving both normal and off-normal lasing upon modification of the lattice parameter of the array. The results demonstrate how state-of-the-art colloidal self-assembly techniques offer a scalable and versatile alternative for the fabrication of plasmonic and photonic devices targeting advanced and non-linear optical phenomena.The authors would like to thank Dr. Martí Gibert Roca for his help in the realization of the optical setup and the dedicated software, as well as Dr. Sebastián Reparaz and Kai Xu for their assistance in the lifetime measurements. Y.C. acknowledges the auspices of the UAB material science doctoral program. This project received funding from the Spanish Ministerio de Ciencia e Innovación through grants, PDC2021-121475-I00/AEI/10.13039/501100011033 by the “European Union” NextGenerationEU/PRTR, PID2019-106860GB-I00/AEI/10.13039/501100011033 and FUNFUTURE (CEX2019-000917-S), in the framework of the Spanish Severo Ochoa Centre of Excellence program. L.S. and Y.C.'s research is supported by the 2020 Post-doctoral Junior Leader-Incoming Fellowship by “La Caixa” Foundation (ID 100010434, fellowship code LCF/BQ/PI20/11760028), and from a 2022 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    corecore