159 research outputs found
Towards a first principles description of phonons in NiPt disordered alloys: the role of relaxation
Using a combination of density-functional perturbation theory and the
itinerant coherent potential approximation, we study the effects of atomic
relaxation on the inelastic incoherent neutron scattering cross sections of
disordered NiPt alloys. We build on previous work, where
empirical force constants were adjusted {\it ad hoc} to agree with experiment.
After first relaxing all structural parameters within the local-density
approximation for ordered NiPt compounds, density-functional perturbation
theory is then used to compute phonon spectra, densities of states, and the
force constants. The resulting nearest-neighbor force constants are first
compared to those of other ordered structures of different stoichiometry, and
then used to generate the inelastic scattering cross sections within the
itinerant coherent potential approximation. We find that structural relaxation
substantially affects the computed force constants and resulting inelastic
cross sections, and that the effect is much more pronounced in random alloys
than in ordered alloys.Comment: 8 pages, 3 eps figures, uses revtex
Inelastic neutron scattering in random binary alloys : an augmented space approach
Combining the augmented space representation for phonons with a generalized
version of Yonezawa-Matsubara diagrammatic technique, we have set up a
formalism to seperate the coherent and incoherent part of the total intensity
of thermal neutron scattering from disordered alloys. This is done exacly
without taking any recourse to mean-field like approximation (as done
previously). The formalism includes disorder in masses, force constants and
scattering lengths. Implementation of the formalism to realistic situations is
performed by an augmented space Block recursion which calculates entire Green
matrix and self energy matrix which in turn is needed to evaluate the coherent
and incoherent intensities. we apply the formalism to NiPd and NiPt alloys.
Numerical results on coherent and incoherent scattering cross sections are
presented along the highest symmetry directions. Finally the incoherent
intensities are compared with the CPA and also with experiments.Comment: 18 pages, 13 figure
Phonon densities of states and vibrational entropies of ordered and disordered Ni3Al
We performed inelastic neutron-scattering measurements on powdered Ni3Al. The alloy was prepared in two states of chemical order: (1) with equilibrium L12 order, and (2) with disorder (the material was a fcc solid solution prepared by high-energy ball milling). Procedures to convert the energy loss spectra into approximate phonon density of states (DOS) curves for Ni3Al in the two states of chemical order were guided by Born–von Kármán analyses with force constants obtained from previous single-crystal experiments on L12-ordered Ni3Al and fcc Ni metal. The main difference in the phonon DOS of the ordered and disordered alloys occurs near 39 meV, the energy of a peak arising from optical modes in the ordered alloy. These high-frequency optical modes involve primarily the vibrations of the aluminum-rich sublattice. The disordered alloy, which does not have such a sublattice, shows much less intensity at this energy. This difference in the phonon DOS around 39 meV is the main contributor to the difference in vibrational entropy of disordered and ordered Ni3Al, which we estimate to be Svibdis-Svibord=(+0.2±0.1)kB/atom at high temperatures
Quasi-Elastic Scattering Studies of Water Diffusion
Quasi-elastic neutron scattering is a powerful method to study the dynamics of protons in biological systems. The technique has been used both for the study of water diffusion and protein motion. The neutron scattering measurements on water show that the translational and rotational diffusion coefficients in biological systems are reduced from bulk values. We review the measurements on water in frog muscle, cysts of artemia, and phycocyanin. Measurements on dry trypsin and trypsin-D2O solutions over the temperature range 75-300K show that there is proton motion at the one angstrom level even in the dry or frozen state
Structure and Vibrations of the Vicinal Copper (211) Surface
We report a first principles theoretical study of the surface relaxation and
lattice dynamics of the Cu(211) surface using the plane wave pseudopotential
method. We find large atomic relaxations for the first several atomic layers
near the step edges on this surface, and a substantial step-induced
renormalization of the surface harmonic force constants. We use the results to
study the harmonic fluctuations around the equilibrium structure and find three
new step-derived features in the zone center vibrational spectrum. Comparison
of these results with previous theoretical work and weith experimental studies
using inelastic He scattering are reported.Comment: 6 Pages RevTex, 7 Figures in Postscrip
Anisotropic Condensation of Helium in Nanotube Bundles
Helium atoms are strongly attracted to the interstitial channels within a
bundle of carbon nanotubes. The strong corrugation of the axial potential
within a channel can produce a lattice gas system where the weak mutual
attraction between atoms in neighboring channels of a bundle induces
condensation into a remarkably anisotropic phase with very low binding energy.
We estimate the binding energy and critical temperature for 4He in this novel
quasi-one-dimensional condensed state. At low temperatures, the specific heat
of the adsorbate phase (fewer than 2% of the total number of atoms) greatly
exceeds that of the host material.Comment: 8 pages, 3 figures, submitted to PRL (corrected typo in abstract
H2 in the interstitial channels of nanotube bundles
The equation of state of H2 adsorbed in the interstitial channels of a carbon
nanotube bundle has been calculated using the diffusion Monte Carlo method. The
possibility of a lattice dilation, induced by H2 adsorption, has been analyzed
by modeling the cohesion energy of the bundle. The influence of factors like
the interatomic potentials, the nanotube radius and the geometry of the channel
on the bundle swelling is systematically analyzed. The most critical input is
proved to be the C-H2 potential. Using the same model than in planar graphite,
which is expected to be also accurate in nanotubes, the dilation is observed to
be smaller than in previous estimations or even inexistent. H2 is highly
unidimensional near the equilibrium density, the radial degree of freedom
appearing progressively at higher densities.Comment: Accepted for publication in PR
Phonon modes and vibrational entropy of mixing in Fe-Cr
Results from neutron inelastic-scattering experiments on Fe, Cr, and three bcc Fe-Cr alloys were analyzed with a Born–von Kármán model to obtain phonon density-of-states (DOS) curves. We compared the phonon DOS of the bcc Fe-Cr alloys to the composite phonon DOS from appropriate fractions of the phonon DOS of the pure metals Fe and Cr. In the high-temperature limit, we obtained the vibrational entropy of mixing of Fe and Cr to be 0.141, 0.201, and 0.214 kB/atom for alloys of Fe70Cr30,Fe53Cr47, and Fe30Cr70, respectively, with the disordered solid solution having the larger vibrational entropy. Some expected effects of vibrational entropy on the chemical unmixing transformation in Fe-Cr are discussed
Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite
The inelastic electron tunneling spectrum (IETS)of highly oriented pyrolitic
graphite (HOPG) has been measured with scanning tunneling spectroscopy (STS) at
6K. The observed spectral features are in very good agreement with the
vibrational density of states (vDOS) of graphite calculated from first
principles. We discuss the enhancement of certain phonon modes by
phonon-assisted tunneling in STS based on the restrictions imposed by the
electronic structure of graphite. We also demonstrate for the first time the
local excitation of surface-plasmons in IETS which are detected at an energy of
40 meV.Comment: PRB rapid communication, submitte
The strain energy and Young's Moduli of single-wall Carbon nanotubules calculated from the electronic energy-band theory
The strain energies in straight and bent single-walled carbon nanotubes
(SWNTs) are calculated by taking account of the total energy of all the
occupied band electrons. The obtained results are in good agreement with
previous theoretical studies and experimental observations. The Young's modulus
and the effective wall thickness of SWNT are obtained from the bending strain
energies of SWNTs with various cross-sectional radii. The repulsion potential
between ions contributes the main part of the Young's modulus of SWNT.
The wall thickness of SWNT comes completely from the overlap of electronic
orbits, and is approximately of the extension of
orbit of carbon atom. Both the Young's modulus and the wall thickness
are independent of the radius and the helicity of SWNT, and insensitive to the
fitting parameters.
The results show that continuum elasticity theory can serve well to describe
the mechanical properties of SWNTs.Comment: 12 pages, 2 figure
- …