474 research outputs found

    Collective Excitations of Holographic Quantum Liquids in a Magnetic Field

    Full text link
    We use holography to study N=4 supersymmetric SU(Nc) Yang-Mills theory in the large-Nc and large-coupling limits coupled to a number Nf << Nc of (n+1)-dimensional massless supersymmetric hypermultiplets in the Nc representation of SU(Nc), with n=2,3. We introduce a temperature T, a baryon number chemical potential mu, and a baryon number magnetic field B, and work in a regime with mu >> T,\sqrt{B}. We study the collective excitations of these holographic quantum liquids by computing the poles in the retarded Green's function of the baryon number charge density operator and the associated peaks in the spectral function. We focus on the evolution of the collective excitations as we increase the frequency relative to T, i.e. the hydrodynamic/collisionless crossover. We find that for all B, at low frequencies the tallest peak in the spectral function is associated with hydrodynamic charge diffusion. At high frequencies the tallest peak is associated with a sound mode similar to the zero sound mode in the collisionless regime of a Landau Fermi liquid. The sound mode has a gap proportional to B, and as a result for intermediate frequencies and for B sufficiently large compared to T the spectral function is strongly suppressed. We find that the hydrodynamic/collisionless crossover occurs at a frequency that is approximately B-independent.Comment: 45 pages, 8 png and 47 pdf images in 22 figure

    Holographic zero sound at finite temperature in the Sakai-Sugimoto model

    Get PDF
    In this paper, we study the fate of the holographic zero sound mode at finite temperature and non-zero baryon density in the deconfined phase of the Sakai-Sugimoto model of holographic QCD. We establish the existence of such a mode for a wide range of temperatures and investigate the dispersion relation, quasi-normal modes, and spectral functions of the collective excitations in four different regimes, namely, the collisionless quantum, collisionless thermal, and two distinct hydrodynamic regimes. For sufficiently high temperatures, the zero sound completely disappears, and the low energy physics is dominated by an emergent diffusive mode. We compare our findings to Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references added, v3: some clarifications relating to the different regimes added, matches version accepted for publication in JHEP, v4: corrected typo in eq. (3.18

    The a-theorem and conformal symmetry breaking in holographic RG flows

    Full text link
    We study holographic models describing an RG flow between two fixed points driven by a relevant scalar operator. We show how to introduce a spurion field to restore Weyl invariance and compute the anomalous contribution to the generating functional in even dimensional theories. We find that the coefficient of the anomalous term is proportional to the difference of the conformal anomalies of the UV and IR fixed points, as expected from anomaly matching arguments in field theory. For any even dimensions the coefficient is positive as implied by the holographic a-theorem. For flows corresponding to spontaneous breaking of conformal invariance, we also compute the two-point functions of the energy-momentum tensor and the scalar operator and identify the dilaton mode. Surprisingly we find that in the simplest models with just one scalar field there is no dilaton pole in the two-point function of the scalar operator but a stronger singularity. We discuss the possible implications.Comment: 50 pages. v2: minor changes, added references, extended discussion. v3: we have clarified some of the calculations and assumptions, results unchanged. v4: published version in JHE

    Generating Temperature Flow for eta/s with Higher Derivatives: From Lifshitz to AdS

    Full text link
    We consider charged dilatonic black branes in AdS_5 and examine the effects of perturbative higher derivative corrections on the ratio of shear viscosity to entropy density eta/s of the dual plasma. The structure of eta/s is controlled by the relative hierarchy between the two scales in the plasma, the temperature and the chemical potential. In this model the background near-horizon geometry interpolates between a Lifshitz-like brane at low temperature, and an AdS brane at high temperatures -- with AdS asymptotics in both cases. As a result, in this construction the viscosity to entropy ratio flows as a function of temperature, from a value in the IR which is sensitive to the dynamical exponent z, to the simple result expected for an AdS brane in the UV. Coupling the scalar directly to the higher derivative terms generates additional temperature dependence, and leads to a particularly interesting structure for eta/s in the IR.Comment: Plots and references added. Journal version of the pape

    Moduli Spaces of Cold Holographic Matter

    Full text link
    We use holography to study (3+1)-dimensional N=4 supersymmetric Yang-Mills theory with gauge group SU(Nc), in the large-Nc and large-coupling limits, coupled to a single massless (n+1)-dimensional hypermultiplet in the fundamental representation of SU(Nc), with n=3,2,1. In particular, we study zero-temperature states with a nonzero baryon number charge density, which we call holographic matter. We demonstrate that a moduli space of such states exists in these theories, specifically a Higgs branch parameterized by the expectation values of scalar operators bilinear in the hypermultiplet scalars. At a generic point on the Higgs branch, the R-symmetry and gauge group are spontaneously broken to subgroups. Our holographic calculation consists of introducing a single probe Dp-brane into AdS5 times S^5, with p=2n+1=7,5,3, introducing an electric flux of the Dp-brane worldvolume U(1) gauge field, and then obtaining explicit solutions for the worldvolume fields dual to the scalar operators that parameterize the Higgs branch. In all three cases, we can express these solutions as non-singular self-dual U(1) instantons in a four-dimensional space with a metric determined by the electric flux. We speculate on the possibility that the existence of Higgs branches may point the way to a counting of the microstates producing a nonzero entropy in holographic matter. Additionally, we speculate on the possible classification of zero-temperature, nonzero-density states described holographically by probe D-branes with worldvolume electric flux.Comment: 56 pages, 8 PDF images, 4 figure

    Functional Energetics of CD4+-Cellular Immunity in Monoclonal Antibody-Associated Progressive Multifocal Leukoencephalopathy in Autoimmune Disorders

    Get PDF
    BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic central nervous system- (CNS-) infection that typically occurs in a subset of immunocompromised individuals. An increasing incidence of PML has recently been reported in patients receiving monoclonal antibody (mAb) therapy for the treatment of autoimmune diseases, particularly those treated with natalizumab, efalizumab and rituximab. Intracellular CD4(+)-ATP-concentration (iATP) functionally reflects cellular immunocompetence and inversely correlates with risk of infections during immunosuppressive therapy. We investigated whether iATP may assist in individualized risk stratification for opportunistic infections during mAb-treatment. METHODOLOGY/PRINCIPAL FINDINGS: iATP in PHA-stimulated, immunoselected CD4(+)-cells was analyzed using an FDA-approved assay. iATP of mAb-associated PML (natalizumab (n = 8), rituximab (n = 2), efalizumab (n = 1)), or other cases of opportunistic CNS-infections (HIV-associated PML (n = 2), spontaneous PML, PML in a psoriasis patient under fumaric acids, natalizumab-associated herpes simplex encephalitis (n = 1 each)) was reduced by 59% (194.5±29 ng/ml, mean±SEM) in comparison to healthy controls (HC, 479.9±19.8 ng/ml, p<0.0001). iATP in 14 of these 16 patients was at or below 3(rd) percentile of healthy controls, similar to HIV-patients (n = 18). In contrast, CD4(+)-cell numbers were reduced in only 7 of 15 patients, for whom cell counts were available. iATP correlated with mitochondrial transmembrane potential (ΔΨ(m)) (iATP/ΔΨ(m)-correlation:tau = 0.49, p = 0.03). Whereas mean iATP of cross-sectionally analysed natalizumab-treated patients was unaltered (448.7±12 ng/ml, n = 150), iATP was moderately decreased (316.2±26.1 ng/ml, p = 0.04) in patients (n = 7) who had been treated already during the pivotal phase III trials and had received natalizumab for more than 6 years. 2/92 (2%) patients with less than 24 months natalizumab treatment revealed very low iATP at or below the 3(rd) percentile of HC, whereas 10/58 (17%) of the patients treated for more than 24 months had such low iATP-concentrations. CONCLUSION: Our results suggest that bioenergetic parameters such as iATP may assist in risk stratification under mAb-immunotherapy of autoimmune disorders
    • …
    corecore