8,795 research outputs found
A mutant of Neurospora crassa deficient in cytochrome c heme lyase activity cannot import cytochrome c into mitochondria
The nuclear cyt-2-1 mutant of Neurospora crassa is characterized by a gross deficiency of cytochrome c (Bertrand, H., and Collins, R. A. (1978) Mol. Gen. Genet. 166, 1-13). The mutant produces mRNA that can be translated into apocytochrome c in vitro. Apocytochrome c is also synthesized in vivo in cyt-2-1, but it is rapidly degraded and thus does not accumulate in the cytosol. Mitochondria from wild-type cells bind apocytochrome c made in vitro from either wild-type or cyt-2-1 mRNA and convert it to holocytochrome c. This conversion depends on the addition of heme by cytochrome c heme lyase and is coupled to translocation of cytochrome c into the intermembrane space. Mitochondria from the cyt-2-1 strain are deficient in the ability to bind apocytochrome c. They are also completely devoid of cytochrome c heme lyase activity. These defects explain the inability of the cyt-2-1 mutant to convert apocytochrome c to the holo form and to import it into mitochondria
Darwin\u27s Bee-Trap: The Kinetics of Catasetum, a New World Orchid
The orchid genera Catasetum employs a hair-trigger activated, pollen release mechanism, which forcibly attaches pollen sacs onto foraging insects in the New World tropics. This remarkable adaptation was studied extensively by Charles Darwin and he termed this rapid response sensitiveness. Using high speed video cameras with a frame speed of 1000 fps, this rapid release was filmed and from the subsequent footage, velocity, speed, acceleration, force and kinetic energy were computed
The kinetics of fluoride uptake by synthetic hydroxyapatite
The kinetics of fluoride uptake by synthetic hydroxyapatite from aqueous solution has been studied. Experiments involved
exposing 0.1 g of synthetic hydroxyapatite to 5 cm3 of sodium fluoride solution in the concentration range 100-1000 ppm fluoride and determining fluoride concentration at regular time intervals with a fluoride ion-selective electrode. In all cases, uptake was found to follow pseudo-second order kinetics with correlation coefficients of at least 0.998; all systems equilibrated by 24 hours with equilibrium uptake values that varied with the initial fluoride concentration. The kinetic results
differ from those previously reported for much lower concentrations of fluoride, but in the present case, the concentrations were of clinical relevance, as they are those used in fluoride-containing dental products. Further work is necessary to determine how well these findings model uptake by natural hydroxyapatite and hence the extent to which they might apply in vivo
Chaotic saddles in nonlinear modulational interactions in a plasma
A nonlinear model of modulational processes in the subsonic regime involving
a linearly unstable wave and two linearly damped waves with different damping
rates in a plasma is studied numerically. We compute the maximum Lyapunov
exponent as a function of the damping rates in a two-parameter space, and
identify shrimp-shaped self-similar structures in the parameter space. By
varying the damping rate of the low-frequency wave, we construct bifurcation
diagrams and focus on a saddle-node bifurcation and an interior crisis
associated with a periodic window. We detect chaotic saddles and their stable
and unstable manifolds, and demonstrate how the connection between two chaotic
saddles via coupling unstable periodic orbits can result in a crisis-induced
intermittency. The relevance of this work for the understanding of modulational
processes observed in plasmas and fluids is discussed.Comment: Physics of Plasmas, in pres
Humans in the Loop
From lethal drones to cancer diagnostics, humans are increasingly working with complex and artificially intelligent algorithms to make decisions which affect human lives, raising questions about how best to regulate these human-in-the-loop systems. We make four contributions to the discourse.
First, contrary to the popular narrative, law is already profoundly and often problematically involved in governing human-in-the-loop systems: it regularly affects whether humans are retained in or removed from the loop. Second, we identify the MABA-MABA trap, which occurs when policymakers attempt to address concerns about algorithmic incapacities by inserting a human into a decision-making process. Regardless of whether the law governing these systems is old or new, inadvertent or intentional, it rarely accounts for the fact that human-machine systems are more than the sum of their parts: they raise their own problems and require their own distinct regulatory interventions.
But how to regulate for success? Our third contribution is to highlight the panoply of roles humans might be expected to play, to assist regulators in understanding and choosing among the options. For our fourth contribution, we draw on legal case studies and synthesize lessons from human factors engineering to suggest regulatory alternatives to the MABA-MABA approach. Namely, rather than carelessly placing a human in the loop, policymakers should regulate the human-in-the-loop system
Humans in the Loop
From lethal drones to cancer diagnostics, humans are increasingly working with complex and artificially intelligent algorithms to make decisions which affect human lives, raising questions about how best to regulate these “human-in-the-loop” systems. We make four contributions to the discourse.
First, contrary to the popular narrative, law is already profoundly and often problematically involved in governing human-in-the-loop systems: it regularly affects whether humans are retained in or removed from the loop. Second, we identify “the MABA-MABA trap,” which occurs when policymakers attempt to address concerns about algorithmic incapacities by inserting a human into a decisionmaking process. Regardless of whether the law governing these systems is old or new, inadvertent or intentional, it rarely accounts for the fact that human-machine systems are more than the sum of their parts: they raise their own problems and require their own distinct regulatory interventions.
But how to regulate for success? Our third contribution is to highlight the panoply of roles humans might be expected to play, to assist regulators in understanding and choosing among the options. For our fourth contribution, we draw on legal case studies and synthesize lessons from human factors engineering to suggest regulatory alternatives to the MABA-MABA approach. Namely, rather than carelessly placing a human in the loop, policymakers should regulate the human-in-the-loop system
Cryptic Patent Reform Through the Inflation Reduction Act.
If a statute substantially changes the way patents work in an industry where patents are central, but says almost nothing about patents, is it patent reform? We argue the answer is yes — and it’s not a hypothetical question. The Inflation Reduction Act (“IRA”) does not address patents, but its drug pricing provisions are likely to prompt major changes in how patents work in the pharmaceutical industry. For many years scholars have decried industry’s ever-evolving strategies that use combinations of patents to block competition for as long as possible, widely known as “evergreening,” but legislators have not been receptive to calls for reform. The IRA may just succeed in changing that pattern, at least to some extent, by imposing drug pricing reforms that alter the incentives for evergreening in the first place. In this Article, we lay out the case that the IRA contains implicit reforms to the pharmaceutical patent system. Its details are not straightforward, nor is its implementation, but its effects could nevertheless be major. Drug patent reform, a longtime priority for activists and scholars, may in fact have already happened
New Innovation Models in Medical AI
In recent years, scientists and researchers have devoted considerable resources to developing medical artificial intelligence (AI) technologies. Many of these technologies—particularly those that resemble traditional medical devices in their functions—have received substantial attention in the legal and policy literature. But other types of novel AI technologies, such as those related to quality improvement and optimizing use of scarce facilities, have been largely absent from the discussion thus far. These AI innovations have the potential to shed light on important aspects of health innovation policy. First, these AI innovations interact less with the legal regimes that scholars traditionally conceive of as shaping medical innovation: patent law, FDA regulation, and health insurance reimbursement. Second, and perhaps related, a different set of innovation stakeholders, including health systems and insurers, are conducting their own research and development in these areas for their own use without waiting for commercial product developers to innovate for them. The activities of these innovators have implications for health innovation policy and scholarship. Perhaps most notably, data possession and control play a larger role in determining capacity to innovate in this space, while the ability to satisfy the quality standards of regulators and payers plays a smaller role relative to more familiar biomedical innovations such as new drugs and devices
Interaction of fluoride complexes derived from glass-ionomer cements with hydroxyapatite
A study has been undertaken of the interaction of complexed fluoride extracted from glass-ionomer dental cements with
synthetic hydroxyapatite powder. Extracts were prepared from two commercial glass-ionomers (Fuji IX and ChemFlex)
under both neutral and acidic conditions. They were analysed by ICP-OES and by fluoride-ion selective electrode with and without added TISAB to decomplex the fluoride. The pH of the acid extracts was 4, conditions under which fluoridecomplexes with protons as HF or HF2, it also complexes with aluminium, which was found to be present in higher amounts in the acid extracts. Fluoride was found to be almost completely complexed in acid extracts, but not in neutral extracts, which contained free fluoride ions. Exposure of these extracts to synthetic hydroxyapatite powder showed that fluoride was taken up rapidly (within 5 minutes), whether or not it was complexed. SEM (EDAX) study of recovered hydroxyapatite showed only minute traces of aluminium taken up under all conditions. This showed that aluminium interacts hardly at all with hydroxyapatite, and hence is probably not involved in the remineralisation process
Probing strongly interacting atomic gases with energetic atoms
We investigate properties of an energetic atom propagating through strongly
interacting atomic gases. The operator product expansion is used to
systematically compute a quasiparticle energy and its scattering rate both in a
spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent
quantum Monte Carlo simulations even at a relatively small momentum k/kF>1.5
indicates that our large-momentum expansions are valid in a wide range of
momentum. We also study a differential scattering rate when a probe atom is
shot into atomic gases. Because the number density and current density of the
target atomic gas contribute to the forward scattering only, its contact
density (measure of short-range pair correlation) gives the leading
contribution to the backward scattering. Therefore, such an experiment can be
used to measure the contact density and thus provides a new local probe of
strongly interacting atomic gases.Comment: 35 pages, 11 figures; (v4) published with the new titl
- …