15,321 research outputs found

    STS-40 orbital acceleration research experiment flight results during a typical sleep period

    Get PDF
    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model

    Two-stream instability in quasi-one-dimensional Bose-Einstein condensates

    Get PDF
    We apply a kinetic model to predict the existence of an instability mechanism in elongated Bose-Einstein condensates. Our kinetic description, based on the Wigner formalism, is employed to highlight the existence of unstable Bogoliubov waves that may be excited in the counterpropagation configuration. We identify a dimensionless parameter, the Mach number at T=0, that tunes different regimes of stability. We also estimate the magnitude of the main parameters at which two-stream instability is expected to be observed under typical experimental conditions

    Direct and Heterodyne Detection of Microwaves in a Metallic Single Wall Carbon Nanotube

    Full text link
    This letter reports measurements of microwave (up to 4.5 GHz) detection in metallic single-walled carbon nanotubes. The measured voltage responsivity was found to be 114 V/W at 77K. We also demonstrated heterodyne detection at 1 GHz. The detection mechanism can be explained based on standard microwave detector theory and the nonlinearity of the DC IV-curve. We discuss the possible causes of this nonlinearity. While the frequency response is limited by circuit parasitics in this measurement, we discuss evidence that indicates that the effect is much faster and that applications of carbon nanotubes as terahertz detectors are feasible

    Data Science for all : a stroll in the foothills.

    Get PDF
    Data science presents both opportunities and threats to conventional statistics courses. Opportunities include being at the bleeding edge of data analysis, and learning new ways to model phenomena; threats include the challenge of learning new skills and reviewing fundamental assumptions about explanation, prediction and modeling. Powerful data visualisations makes it easier to introduce students to fundamental statistical ideas associated with multivariate data. Data science provides methods to tackle problems that are intractable using analytic methods. Students need to learn how to model complex problems, and to understand the problematic nature of modeling – and they need to consider the practical and ethical implications of their (and others’) work. Here, we offer a stroll into the foothills, along with aphorisms and heuristics for data analysts

    Systematic study of Optical Feshbach Resonances in an ideal gas

    Full text link
    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the Optical Feshbach Resonance (OFR) effect in an ultracold gas of bosonic 88^{88}Sr. A systematic measurement of three resonances allows precise determinations of the OFR strength and scaling law, in agreement with coupled-channels theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. OFR could be used to control atomic interactions with high spatial and temporal resolution.Comment: Significant changes to text and figure presentation to improve clarity. Extended supplementary material. 4 pages, 4 figures; includes supplementary material 8 pages, 4 figures. Submitted to Physical Review Letter

    Effects of a multi-component exercise program and calcium–vitamin-D3-fortified milk on bone mineral density in older men : a randomised controlled trial

    Full text link
    Summary We examined the independent and combined effects of a multi-component exercise program and calcium&ndash;vitamin-D3-fortified milk on bone mineral density (BMD) in older men. Exercise resulted in a 1.8% net gain in femoral neck BMD, but additional calcium&ndash;vitamin D3 did not enhance the response in this group of older well-nourished men.Introduction This 12-month randomised controlled trial assessed whether calcium&ndash;vitamin-D3-fortified milk could enhance the effects of a multi-component exercise program on BMD in older men.Methods Men (n&thinsp; =&thinsp;180) aged 50&ndash;79 years were randomised into: (1) exercise + fortified milk; (2) exercise; (3) fortified milk; or (4) controls. Exercise consisted of high intensity progressive resistance training with weight-bearing impact exercise. Men assigned to fortified milk consumed 400 mL/day of low fat milk providing an additional 1,000 mg/day calcium and 800 IU/day vitamin D3. Femoral neck (FN), total hip, lumbar spine and trochanter BMD and body composition (DXA), muscle strength 25-hydroxyvitamin D and parathyroid hormone (PTH) were assessed.Results There were no exercise-by-fortified milk interactions at any skeletal site. Exercise resulted in a 1.8% net gain in FN BMD relative to no-exercise (p&thinsp;&lt;&thinsp;0.001); lean mass (0.6 kg, p&thinsp;&lt;&thinsp;0.05) and muscle strength (20&ndash;52%, p&thinsp;&lt;&thinsp;0.001) also increased in response to exercise. For lumbar spine BMD, there was a net 1.4&ndash;1.5% increase in all treatment groups relative to controls (all p&thinsp;&lt;&thinsp;0.01). There were no main effects of fortified milk at any skeletal site.Conclusion A multi-component community-based exercise program was effective for increasing FN BMD in older men, but additional calcium&ndash;vitamin D3 did not enhance the osteogenic response.<br /
    • …
    corecore