66 research outputs found

    2-(1,4-Dioxo-1,4-dihydro-2-naphthyl)-2-methylpropanoic acid

    Get PDF
    The sterically crowded title compound, C₁₄H₁₂O₄, crystallizes as centrosymmetric hydrogen-bonded dimers involving the carboxyl groups. The naphthoquinone ring system is folded by 11.5 (1)° about a vector joining the 1,4-C atoms, and the quinone O atoms are displaced from the ring plane, presumably because of steric interactions with the bulky substituent

    A Boron–Boron Double Transborylation Strategy for the Synthesis of gem-Diborylalkanes

    Get PDF
    Olefin hydroboration reactions provide efficient access to synthetically versatile and easily handled organoboronic esters. In this study, we demonstrate that the commercially available organoborane reagent 9-borabicyclo[3.3.1]nonane (H-B-9-BBN) can serve as a catalyst for the sequential double hydroboration of alkynes using pinacolborane (HBpin). This strategy, which is effective for a wide range of terminal alkynes, is predicated upon a key C(sp3)-B/B-H transborylation reaction. Transition-state thermodynamic parameters and 10-boron-isotopic labeling experiments are indicative of a σ-bond metathesis exchange pathway

    Boron-Catalyzed, Diastereo- and Enantioselective Allylation of Ketones with Allenes

    Get PDF
    The diastereo- and enantioselective allylation of ketones remains a synthetic challenge, with transition metal catalysis offering the most applied methods. Here, a boron-catalyzed allylation of ketones with allenes is presented. Excellent yield, regioselectivity, and diastereoselectivity were found across functionalized substrates. The reaction was further developed to accommodate an enantioenriched boron catalyst and thus gave asymmetric ketone allylation in good yield, diastereoselectivity, and enantioselectivity. Mechanistic studies supported a hydroboration–allylation–transborylation pathway.S.P.T. acknowledges the Royal Society for a University Research Fellowship (URF/R/191015). S.P.T. and K.N. thank AstraZeneca and EPSRC for an iCase PhD studentship

    A boron-oxygen transborylation strategy for a catalytic Midland reduction

    Get PDF
    The enantioselective hydroboration of ketones is a textbook reaction requiring stoichiometric amounts of an enantioenriched borane, with the Midland reduction being a seminal example. Here, a turnover strategy for asymmetric catalysis, boron.oxygen transborylation, has been developed and used to transform the stoichiometric borane reagents of the Midland reduction into catalysts. This turnover strategy was demonstrated by the enantioselective reduction of ketones, including derivatives of biologically active molecules and those containing reducible groups. The enantioenriched borane catalyst was generated in situ from commercially available reagents, 9-borabicyclo[3.3.1]nonane (H-B-9-BBN) and β-pinene, and B.O transborylation with pinacolborane (HBpin) was used for catalytic turnover. Mechanistic studies indicated that B.O transborylation proceeded by B.O/B.H boron exchange through a stereoretentive, concerted transition state, resembling σ-bond metathesis

    B–N/B–H Transborylation: borane-catalysed nitrile hydroboration

    Get PDF
    The reduction of nitriles to primary amines is a useful transformation in organic synthesis, however, it often relies upon stoichiometric reagents or transition-metal catalysis. Herein, a borane-catalysed hydroboration of nitriles to give primary amines is reported. Good yields (48–95%) and chemoselectivity (e.g., ester, nitro, sulfone) were observed. DFT calculations and mechanistic studies support the proposal of a double B–N/B–H transborylation mechanism

    Defective axonal transport in motor neuron disease

    Get PDF
    Several recent studies have highlighted the role of axonal transport in the pathogenesis of motor neuron diseases. Mutations in genes that control microtubule regulation and dynamics have been shown to cause motor neuron degeneration in mice and in a form of human motor neuron disease. In addition, mutations in the molecular motors dynein and kinesins and several proteins associated with the membranes of intracellular vesicles that undergo transport cause motor neuron degeneration in humans and mice. Paradoxically, evidence from studies on the legs at odd angles (Loa) mouse and a transgenic mouse model for human motor neuron disease suggest that partial limitation of the function of dynein may in fact lead to improved axonal transport in the transgenic mouse, leading to delayed disease onset and increased life span
    • …
    corecore