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ABSTRACT: The use of stoichiometric organoborane reductants in organic synthesis is well established. Here, these reagents have 
been rendered catalytic through an isodesmic B−O/B−H transborylation, applied in the borane-catalyzed, chemoselective alkene 
reduction and formal hydrofucntionalization of enones. The reaction was found to proceed by a 1,4-hydroboration of the enone and 
B−O/B−H transborylation with HBpin enabling catalyst turnover. Single-turnover and isotopic labelling experiments supported the 
proposed mechanism of catalysis with 1,4-hydroboration and B−O/B−H transborylation as key steps. 

Chemoselective reductions are an important tool in the syn-
thesis of natural products and pharmaceutical targets.1 The abil-
ity to selectively reduce one functional group over another re-
moves the requirement of protecting groups, and results in ele-
gant and atom economic syntheses. The chemoselective reduc-
tion and reductive functionalization of enones at the alkene is 
of interest as the resulting ketones are found in a wide array of 
biologically active compounds.2-6  

The chemoselective reduction of enones at the C=C bond is 
dominated by transition metal catalysis using hydrogenation,7-

12 transfer hydrogenation,13-27 and silanes28-39 as the terminal re-
ductants (Scheme 1, a). Main-group strategies for enone reduc-
tion have generally focussed on carbonyl reduction, most nota-
bly using borohydride reagents40 and the CBS catalyst to give 
enantioenriched allylic alcohols.41 Several stoichiometric, 
main-group methods for the reduction of the enone C=C bond 
have been reported including the use of hydride reagents42 and 
selenium-43 and sulfur-derived reductants.44  

Main-group strategies for the reduction of enones to saturated 
ketones include the use of dihydropyridines,45-48 frustrated 
Lewis pairs,49,50 bismuth catalysis,51 and phosphoric acid catal-
ysis using hydroboranes52 and hydrosilanes53-55 as the terminal 
reductants. However, these methods generally have limited sub-
strate scope with respect to chemoselectivity over reducible 
functional groups, require multi-step synthesis of catalysts, or 
suffer from limited sustainability of the reaction condotions.49-

55 Alternatively, hydroboranes such as catechol borane (HBcat), 
dicyclohexyl borane (HBCy2) and 9-borabicyclo[3.3.1]nonane  

Scheme 1.  

a  Transition-metal-catalysed 1,4-reduction

b  Stoichiometric 1,4-Hydroboration of enones
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(H-B-9-BBN) can be used as stoichiometric reductants for re-
duction of enones by 1,4-hydroboration, which following hy- 
drolysis give the saturated ketones (Scheme 1, b).56,57 Signifi-
cantly, the resulting boron enolate can be trapped by electro-
philes so offering further synthetic value.58 
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Optimization of reaction conditions, for further details see SI table S2. 1H NMR 
yields calculated from crude reaction mixture using 1,3,5-trimethoxybenzene as 
an internal standard. 

Main-group cataly-sis offers an underutilized and sustainable 
alternative to transition metal catalysis, however, the redox 
chemistry of transition metals is not readily translated to main-
group species. Although excellent progress has been made to 
impart the entrenched methods of catalysis on the main-group, 
the use of oxidative addition and reductive elimination remain 
limited beyond the d-block.59 Recently, transborylation has of-
fered a new approach to main-group catalysis, where controlled 
and directed isodesmic ligand interchange is exploited for cata-
lyst turnover and has enabled previously stoichiometric rea-
gents to be used as catalysts.60-62   

B−O/B−H transborylation has been used to render the Mid-
land reduction catalytic.63 If a suitable, secondary organoborane 
catalyst could be identified it was postulated that B−O/B−H 
transborylation could be extended to the chemoselective reduc-
tion of enones with HBpin as a turnover reagent, and terminal 
reductant (Scheme 1, c). 1,4-Hydroboration of an enone by a 
secondary organoborane would give a dialkyl boron enolate 
which could undergo B−O/B−H transborylation with HBpin to 
give a Bpin-enolate, and regenerate the secondary borane cata-
lyst. Hydrolysis of the Bpin-enolate on work-up would give the 
saturated ketone. Alternatively, the Bpin-enolate could be 
trapped by an electrophile resulting in a reductive α-functional-
isation of the enone. 

Commonly used boranes 1a-c for the stoichiometric 1,4-hy-
droboration of enones were assessed as potential catalysts for 
the chemoselective alkene reduction of enones using chalcone 
2a as a model substrate and HBpin as the turnover reagent 
(Scheme 2, a). Commercially available [H-B-9-BBN]2 1c 
achieved the best results giving dihydrochalcone 3a without any 
observed ketone reduction. Equal catalytic activity was ob-
served in several solvent systems including EtOAc, THF and 
toluene. EtOAc was chosen for further study due to the high 
product yield and its status as a ‘green’ solvent.64 Cyclic enones, 
such as cyclohexenone, were unreactive, presumably due to the 
inability to orientate into the s-cis conformation required for 
1,4-hydroboration. In accordance with previous reports,65 α,β-
unsaturated esters and amides were unreactive (see SI, Table 
S2).  

In order to support the proposed mechanism of catalysis, iso-
topic labelling experiments were conducted (Scheme 2, c). The 
use of D-Bpin resulted in deuterium incorporation solely at the 
β-position, consistent with 1,4-hydroboration of the enone by 
D-B-9-BBN D1-1c, generated by B−O/B−D transborylation 
(Scheme 2, b). The mechanism of B−O/B−H transborylation 
was investigated with 10B enriched H-10Bpin in a single-turno-
ver experiment with the O-B-9-BBN enolate 4a. The resulting 
O-Bpin-enolate 10B-5a was obtained with complete 10B incor-
poration showing that the B−O bond of the O-B-9-BBN enolate 
4a was exchanged alongside catalyst regeneration rather than a 
ligand redistribution which would break the B−C bonds. 

Having optimized the reaction conditions and confirmed the 
mechanism through isotopic labelling, the reaction was applied 
to a diverse scope of enones (Scheme 3). Dihydrochalcone, 3a, 
was isolated in high yield (92%) with complete chemoselectiv-
ity for alkene reduction, and without the formation of any allylic 
alcohol observed. The reaction tolerated the presence of an ex-
cellent array of reducible functional groups including ester 3b 
(91%) and 3e (74%), nitrile 3c (52%), alkyne 3d (68%), nitro 
3f (82%), and alkene 3g, (55%) substituents. These functional-
ities react with stoichiometric borane reagents and are can be 
reduced by transition-metal-catalyzed hydrogenation or transfer 
hydrogenation.66 A benzyl ether 3h (73%) was retained during 
the alkene reduction, demonstrating orthogonality to Pd/H2, 
which cleaves benzyl ethers by hydrogenolysis. The inclusion 
of heteroaromatic structures was tolerated, including pyridine 
3i (65%), thiophenes 3j (82%) and 3k (57%) and furan 3l 
(89%). In the case of pyridine 3i a 2-bromo substituent was re-
quired to prevent coordination and deactivation of the borane 
catalyst. Halide substituents were also tolerated with fluoro 3m 
(93%), chloro 3n (92%), bromo 3o (85%) and 3p (86%), and 
iodo 3q (90%) bearing substrates all chemoselectively reduced 
at the alkene without any deleterious side reactions. This is no-
table as halide substituted substrates can be challenging using 
transition metal catalysis due to unwanted oxidative addition-
and protodehalogenation.67  

The Lewis acidic catalyst achieved good yields in the pres-
ence of substrates bearing Lewis basic functionalities such as a 
thioether 3r (87%), di-methylamino 3y (96%) and an ether 3s 
(87%). Several dimethoxydihydrochalcones of biological inter-
est 3t−3w were isolated in good yields and with complete se-
lectivity for alkene reduction. A substrate bearing an unpro-
tected phenol 3x was successfully reduced (88%), using in situ 
protection with an additional equivalent of HBpin. The protec-
tion prevented non-productive reaction of the catalyst, H-B-9-
BBN.



 

Scheme 3. Substrate scopea 
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aReaction conditions: [H-B-9-BBN]2 4 mol%, HBpin (1.2 equiv.) EtOAc, 40 °C, 16 h, then SiO2 (0.5 g, excess). iIsolated as an inseparable mixture with starting material 
(see SI for details). cAn additional equivalent of HBpin was added.

The reaction tolerated the inclusion of aryl-, alkyl-, including 
tBu, and napthyl substituents (3z-3ad) to give the corresponding 
ketones in high yields. The presence of electron-withdrawing 
trifluoromethyl substituents 3ae (58%) and 3af (64%) resulted 
in reduced chemoselectivity and thus reduced yield, with ele-
vated levels of 1,2-hydroboration observed (3ae = 8%, 3af = 
14%). Presumably this occurred due to the electron-withdraw-
ing substituent causing a lowering of the LUMO energy and 
thus biasing chemoselectivity, although this effect was not ob-
served in the reaction of other substrates bearing electron-with-
drawing groups. The chemoselective reduction was applied to 
molecules of pharmaceutical interest, a derivative of the anti-

inflammatory Nabumetone 3ah was chemoselectively reduced 
in good yield (84%). 16-Dihydropregnenolone acetate, a pre-
cursor to 4 pharmaceuticals on the WHO Model List of Essen-
tial Medicines,68 was reduced in good yield to pregnenolone ac-
etate 3ag (80%). This strategy provides an alternative to the 
Pd/H2 approach used in the Marker degradation,69 a semi-syn-
thesis of progesterone.  

In order to further expand the synthetic utility of this reduc-
tion protocol and exploit the O-Bpin-enolate 5a a range of elec-
trophiles were screened for telescope reactivity to interpret this  
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a) Telescope reactions for hydrofunctionalization of enones, see SI for details b) 
Total synthesis of Moskachan B c) Proposed reaction mechanism. 

and achieve a formal hydrofunctionalization of the enone. 
(Scheme 4, a). 

The catalytic generation of boron enolates demonstrated 
comparable reactivity to that of stoichiometric enolate genera-
tion.57 Several reductively functionalised chalcone derivatives 
were prepared by this method. 1,4-Hydroboration of enones has 
previously been reported to give (Z)-enolates 56,65 the generation 
of syn aldol products (6a 82% >20:1 d.r., 6b 86% 5:1) is con-
sistent with this. The reaction was also applicable to bromina-
tion (6c 76%) reactions. 

Finally, the transborylation strategy for chemoselective 
enone reduction was applied to the total synthesis of Moskachan 
B (Scheme 4, b).70 Enone 7c, readily prepared from safrole in 

3-steps, underwent chemoselective 1,4-reduction with H-B-9-
BBN/HBpin to give Moskachan B. 

Using in situ 11B NMR spectroscopy and the isotopic label-
ling studies a mechanism was proposed (Scheme 4, c). Dissoci-
ation of [H-B-9-BBN]2 (δ 11B =28 ppm) to solvent coordinated 
monomer followed by 1,4-hydroboration on the enone, gives a 
O-B-9-BBN-enolate 4a (56 ppm) which undergoes an isodes-
mic B−O/B−H transborylation with HBpin to regenerate the H-
B-9-BBN catalyst and give a O-Bpin-enolate 5a (22 ppm). Hy-
drolysis of the O-Bpin enolate 5a gives the saturated ketone 3 
or reaction with an electrophile the formal hydrofunctionaliza-
tion product. 

In summary, we have demonstrated the application of 
B−O/B−H transborylation as a turnover strategy for the 
chemoselective reduction of enones, thus enabling previously 
stoichiometric borane reductants to be used as catalysts and 
providing a main group alternative to transition metal catalysis 
for this transformation. Catalysis showed excellent functional 
group tolerance and wide applicability with chemo- and regi-
oselective alkene reduction in all cases. The synthetic applica-
bility was extended by intercepting the intermediate O-Bpin-
enolates with electrophiles for the diastereoselective formation 
of C−C bonds through aldol-type reactions and formal hydro-
functionalizations. The use of DBpin as the stoichiometric turn-
over reagent supported the proposed pathway of 1,4-hydrobo-
ration by incorporation of the deuterium in the β-position of the 
ketone. Single turnover experiments with 10B-HBpin showed a 
B−O/B−H transborylation was occurring as the key turnover 
step for catalyst regeneration. 
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