403 research outputs found
Normativity and epistemic intuitions
Journal ArticleIn this paper we propose to argue for two claims. The first is that a sizable group of epistemological projects -- a group which includes much of what has been done in epistemology in the analytic tradition -- would be seriously undermined if one or more of a cluster of empirical hypotheses about epistemic intuitions turns out to be true. The basis for this claim will be set out in section 2. The second claim is that while the jury is still out, there is now a substantial body of evidence suggesting that some of those empirical hypotheses are true. Much of this evidence derives from an ongoing series of experimental studies of epistemic intuitions that we have been conducting. A preliminary report on these studies will be presented in section 3. In light of these studies, we think it is incumbent on those who pursue the epistemological projects in question to either explain why the truth of the hypotheses does not undermine their projects, or to say why, in light of the evidence we will present, they nonetheless assume that the hypotheses are false. In section 4, which is devoted to Objections and Replies, we'll consider some of the ways in which defenders of the projects we are criticizing might reply to our challenge. Our goal is not to offer a conclusive argument demonstrating that the epistemological projects we will be criticizing are untenable. Rather, our aim is to shift the burden of argument. For far too long, epistemologists who rely heavily on epistemic intuitions have proceeded as though they could simply ignore the empirical hypotheses we will set out. We will be well satisfied if we succeed in making a plausible case for the claim that this approach is no longer acceptable
A Unified Approach to Attractor Reconstruction
In the analysis of complex, nonlinear time series, scientists in a variety of
disciplines have relied on a time delayed embedding of their data, i.e.
attractor reconstruction. The process has focused primarily on heuristic and
empirical arguments for selection of the key embedding parameters, delay and
embedding dimension. This approach has left several long-standing, but common
problems unresolved in which the standard approaches produce inferior results
or give no guidance at all. We view the current reconstruction process as
unnecessarily broken into separate problems. We propose an alternative approach
that views the problem of choosing all embedding parameters as being one and
the same problem addressable using a single statistical test formulated
directly from the reconstruction theorems. This allows for varying time delays
appropriate to the data and simultaneously helps decide on embedding dimension.
A second new statistic, undersampling, acts as a check against overly long time
delays and overly large embedding dimension. Our approach is more flexible than
those currently used, but is more directly connected with the mathematical
requirements of embedding. In addition, the statistics developed guide the user
by allowing optimization and warning when embedding parameters are chosen
beyond what the data can support. We demonstrate our approach on uni- and
multivariate data, data possessing multiple time scales, and chaotic data. This
unified approach resolves all the main issues in attractor reconstruction.Comment: 22 pages, revised version as submitted to CHAOS. Manuscript is
currently under review. 4 Figures, 31 reference
A novel framework for quantifying past methane recycling by Sphagnum-methanotroph symbiosis using carbon and hydrogen isotope ratios of leaf wax biomarkers
The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, “PRM.” We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, δ13C of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene
Holocene Vegetation, Climate, and Carbon History on Western Kodiak Island, Alaska
At Phalarope Pond, western Kodiak Island, a multidisciplinary study using pollen and spores, macrofossils, stable isotopes, and carbon accumulation provides the Holocene vegetation and climate history following the deglaciation that began over 16,000 cal years ago (yr BP) [years Before Present, as calibrated from 1950]. Following a cold and dry Younger Dryas, a warm and wet early Holocene was characterized by abundant ferns in a sedge tundra environment with maximum carbon accumulation, similar to high latitude peatlands globally. About 8,700 cal yr BP sedge and ferns declined and climate remained warm as drier conditions prevailed, limiting carbon sequestration. The abrupt shift in D/H (Deuterium/Hydrogen) isotopes of about 60 percent indicates a shift to cooler conditions or a more distal moisture source. Neoglaciation beginning about 3,700 cal yr BP is evident from increases in Artemisia, Empetrum and Betula, signifying cooler conditions, while Alnus declines, paralleling regional trends
Ariadne: An Interface To Support Collaborative Database Browsing
This paper outlines issues in the learning of information searching skills. We report on our observations of the learning of browsing skills and the subsequent iterative development and testing of the Ariadne system -- intended to investigate and support the collaborative learning of search skills. A key part of this support is a mechanism for recording an interaction history and providing students with a visualisation of that history that they can reflect and comment upon. ARIADNE: AN INTERFACE TO SUPPORT COLLABORATIVE DATABASE BROWSING M.B. TWIDALE, D.M. NICHOLS, G. SMITH and J. TREVOR * * GMD-FIT.CSCW, Schloß Birlinghoven, D-53754 Sankt Augustin, Germany INTRODUCT ION The use of library resources has been stereotyped as a solitary activity and this view is reflected in database systems which do not have any social facilities. The actions of other users are hidden from the information searcher restricting her awareness of other searches and effectively preventing collaborative activi..
Conductance-Based Profiling of Nanopores: Accommodating Fabrication Irregularities
Solid-state nanopores are nanoscale channels through otherwise impermeable membranes. Single molecules or particles can be passed through electrolyte-filled nanopores by, e.g. electrophoresis, and then detected through the resulting physical displacement of ions within the nanopore. Nanopore size, shape, and surface chemistry must be carefully controlled, and on extremely challengingwork, confirmed the suitability of the basic conductance equation using the results of a time-dependent experimental conductance measurement during nanopore fabrication by Yanagi et al., and then deliberately relaxed the model constraints to allow for (1) the presence of defects; and (2) the formation of two small pores instead of one larger one. Our simulations demonstrated that the time-dependent conductance formalism supports the detection and characterization of defects, as well as the determination of pore number, but with implementation performance depending on the measurement context and results. In some cases, the ability to discriminate numerically between the correct and incorrect nanopore profiles was slight, but with accompanying differences in candidate nanopore dimensions that could yield to post-fabrication conductance profiling, or be used as convenient uncertainty bounds. Time-dependent nanopore conductance thus offers insight into nanopore structure and function, even in the presence of fabrication defects
Cell and molecular transitions during efficient dedifferentiation
Dedifferentiation is a critical response to tissue damage, yet is not well understood, even at a basic phenomenological level. Developing Dictyostelium cells undergo highly efficient dedifferentiation, completed by most cells within 24 hr. We use this rapid response to investigate the control features of dedifferentiation, combining single cell imaging with high temporal resolution transcriptomics. Gene expression during dedifferentiation was predominantly a simple reversal of developmental changes, with expression changes not following this pattern primarily associated with ribosome biogenesis. Mutation of genes induced early in dedifferentiation did not strongly perturb the reversal of development. This apparent robustness may arise from adaptability of cells: the relative temporal ordering of cell and molecular events was not absolute, suggesting cell programmes reach the same end using different mechanisms. In addition, although cells start from different fates, they rapidly converged on a single expression trajectory. These regulatory features may contribute to dedifferentiation responses during regeneration
The first recorded outbreak of cryptosporidiosis due to Cryptosporidium cuniculus (formerly rabbit genotype), following a water quality incident
Background: We report the first identified outbreak of cryptosporidiosis with Cryptosporidium cuniculus following a water quality incident in Northamptonshire, UK.
Methods: A standardised, enhanced Cryptosporidium exposure questionnaire was administered to all cases of cryptosporidiosis after the incident. Stool samples, water testing, microscopy slides and rabbit gut contents positive for Cryptosporidium were typed at the Cryptosporidium Reference Unit, Singleton Hospital, Swansea.
Results: Twenty-three people were microbiologically linked to the incident although other evidence suggests an excess of 422 cases of cryptosporidiosis above baseline. Most were adult females; unusually for cryptosporidiosis there were no affected children identified under the age of 5 years. Water consumption was possibly higher than in national drinking water consumption patterns. Diarrhoea duration was negatively correlated to distance from the water treatment works where the contamination occurred. Oocyst counts were highest in water storage facilities.
Conclusions: This outbreak is the first caused by C. cuniculus infection to have been noted and it has conclusively demonstrated that this species can be a human pathogen. Although symptomatically similar to cryptosporidiosis from C. parvum or C. hominis, this outbreak has revealed some differences, in particular no children under 5 were identified and females were over-represented. These dissimilarities are unexplained although we postulate possible explanations
Holocene Vegetation, Climate, and Carbon History on Western Kodiak Island, Alaska
At Phalarope Pond, western Kodiak Island, a multidisciplinary study using pollen and spores, macrofossils, stable isotopes, and carbon accumulation provides the Holocene vegetation and climate history following the deglaciation that began over 16,000 cal years ago (yr BP). Following a cold and dry Younger Dryas, a warm and wet early Holocene was characterized by abundant ferns in a sedge tundra environment with maximum carbon accumulation, similar to high latitude peatlands globally. About 8,700 cal yr BP sedge and ferns declined and climate remained warm as drier conditions prevailed, limiting carbon sequestration. The abrupt shift in D/H isotopes of about 60% indicates a shift to cooler conditions or a more distal moisture source. Neoglaciation beginning about 3,700 cal yr BP is evident from increases in Artemisia, Empetrum and Betula, signifying cooler conditions, while Alnus declines, paralleling regional trends
Sediment Starvation Destroys New York City Marshes' Resistance to Sea Level Rise
New York City (NYC) is representative of many vulnerable coastal urban populations, infrastructures, and economies threatened by global sea level rise. The steady loss of marshes in NYC's Jamaica Bay is typical of many urban estuaries worldwide. Essential to the restoration and preservation of these key wetlands is an understanding of their sedimentation. Here we present a reconstruction of the history of mineral and organic sediment fluxes in Jamaica Bay marshes over three centuries, using a combination of density measurements and a detailed accretion model. Accretion rate is calculated using historical land use and pollution markers, through a wide variety of sediment core analyses including geochemical, isotopic, and paleobotanical analyses. We find that, since 1800 CE, urban development dramatically reduced the input of marsh stabilizing mineral sediment. However, as mineral flux decreased, organic matter flux increased. While this organic accumulation increase allowed vertical accumulation to outpace sea level, reduced mineral content causes structural weakness and edge failure. Marsh integrity now requires mineral sediment addition to both marshes and subsurface channels and borrow pits, a solution applicable to drowning estuaries worldwide. Integration of marsh mineral/organic accretion history with modeling provides parameters for marsh preservation at specific locales with sea level rise
- …