21 research outputs found

    The biophysical climate mitigation potential of boreal peatlands during the growing season

    Get PDF
    Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests-the dominant boreal forest type-and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a similar to 20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 degrees C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (similar to 45 degrees N) and decrease toward the northern limit of the boreal biome (similar to 70 degrees N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.Peer reviewe

    DAS181, a sialidase fusion protein, protects human airway epithelium against influenza virus infection: an in vitro pharmacodynamic analysis

    No full text
    OBJECTIVES: The influenza virus (IFV) infection models commonly used to evaluate antiviral agents (e.g. MDCK cell line and mice) are limited by physiological differences from the human respiratory tract in vivo. Here we report the pharmacodynamics of DAS181, a sialidase fusion protein that inhibits influenza infection, in the model systems of well-defined human airway epithelium (HAE) culture and ex vivo culture of fresh human bronchial tissue, both of which are close mimics of the human respiratory tract in vivo. METHODS: HAE culture and ex vivo human bronchi were used to evaluate the sialic acid removal and regeneration efficiency and IFV inhibition after various DAS181 treatment levels and regimens. RESULTS: DAS181 effectively desialylates HAE cultures and ex vivo bronchi tissues and therefore potently inhibits replication of different IFV strains. The treatment effect of DAS181 occurs immediately upon application to the epithelial surface and is unaffected by the respiratory mucus. In both HAE and human bronchial tissue, the inhibitory effect of DAS181 treatment lasts for at least 2 days. Approximately 80% epithelial surface desialylation and significant anti-IFV efficacy can be achieved at topical concentrations of DAS181 in the range of 5-10 microg/cm(2) when applied once daily. An additional treatment or a higher loading dose of DAS181 on the first day provides significant additional treatment benefit. Comparing the effect of DAS181 versus its two analogues, DAS180 and DAS185, has confirmed that sialidase function is critical for DAS181, and the cell-binding domain (amphiregulin tag) prolongs DAS181 retention and potentiates its function. CONCLUSIONS: These results provide valuable insights into DAS181 treatment dose and potential regimens in the clinical setting.link_to_subscribed_fulltex

    An analysis of equine round pen training videos posted online: Differences between amateur and professional trainers

    No full text
    Natural Horsemanship is popular among many amateur and professional trainers and as such, has been the subject of recent scientific enquiry. One method commonly adopted by Natural Horsemanship (NH) trainers is that of round pen training (RPT). RPT sessions are usually split into a series of bouts; each including two phases: chasing/flight and chasing offset/flight offset. However, NH training styles are heterogeneous. This study investigated online videos of RPT to explore the characteristics of RPT sessions and test for differences in techniques and outcomes between amateurs and professionals (the latter being defined as those with accompanying online materials that promote clinics, merchandise or a service to the public). From more than 300 candidate videos, we selected sample files for individual amateur (n = 24) and professional (n = 21) trainers. Inclusion criteria were: training at liberty in a Round Pen; more than one bout and good quality video. Sessions or portions of sessions were excluded if the trainer attached equipment, such as a lunge line, directly to the horse or the horse was saddled, mounted or ridden. The number of bouts and duration of each chasing and non-chasing phase were recorded, and the duration of each RPT session was calculated. General weighted regression analysis revealed that, when compared with amateurs, professionals showed fewer arm movements per bout (p<0.05). Poisson regression analysis showed that professionals spent more time looking up at their horses, when transitioning between gaits, than amateurs did (p<0.05). The probability of horses following the trainer was not significantly associated with amount of chasing, regardless of category. Given that, according to some practitioners, the following response is a goal of RPT, this result may prompt caution in those inclined to give chase. The horses handled by professionals showed fewer conflict behaviours (e.g. kicking, biting, stomping, head-tossing, defecating, bucking and attempting to escape), and fewer oral and head movements (e.g. head-lowering, licking and chewing) than those horses handled by amateurs Overall, these findings highlight the need for selectivity when using the internet as an educational source and the importance of trainer skill and excellent timing when using negative reinforcement in horse training
    corecore