232 research outputs found

    Resequencing and Analysis of Variation in the TCF7L2 Gene in African Americans Suggests That SNP rs7903146 Is the Causal Diabetes Susceptibility Variant

    Get PDF
    OBJECTIVE—Variation in the transcription factor 7-like 2 (TCF7L2) locus is associated with type 2 diabetes across multiple ethnicities. The aim of this study was to elucidate which variant in TCF7L2 confers diabetes susceptibility in African Americans. RESEARCH DESIGN AND METHODS—Through the evalua-tion of tagging single nucleotide polymorphisms (SNPs), type 2 diabetes susceptibility was limited to a 4.3-kb interval, which contains the YRI (African) linkage disequilibrium (LD) block containing rs7903146. To better define the relationship between type 2 diabetes risk and genetic variation we resequenced this 4.3-kb region in 96 African American DNAs. Thirty-three novel and 13 known SNPs were identified: 20 with minor allele frequencies (MAF).0.05 and 12 with MAF.0.10. These poly-morphisms and the previously identified DG10S478 microsatellite were evaluated in African American type 2 diabetic cases (n

    Genome-Wide Association Study Identifies Loci for Liver Enzyme Concentrations in Mexican Americans: The GUARDIAN Consortium.

    Get PDF
    ObjectivePopulations of Mexican American ancestry are at an increased risk for nonalcoholic fatty liver disease. The objective of this study was to determine whether loci in known and novel genes were associated with variation in aspartate aminotransferase (AST) (n = 3,644), alanine aminotransferase (ALT) (n = 3,595), and gamma-glutamyl transferase (GGT) (n = 1,577) levels by conducting the first genome-wide association study (GWAS) of liver enzymes, which commonly measure liver function, in individuals of Mexican American ancestry.MethodsLevels of AST, ALT, and GGT were determined by enzymatic colorimetric assays. A multi-cohort GWAS of individuals of Mexican American ancestry was performed. Single-nucleotide polymorphisms (SNP) were tested for association with liver outcomes by multivariable linear regression using an additive genetic model. Association analyses were conducted separately in each cohort, followed by a nonparametric meta-analysis.ResultsIn the PNPLA3 gene, rs4823173 (P = 3.44 × 10-10 ), rs2896019 (P = 7.29 × 10-9 ), and rs2281135 (P = 8.73 × 10-9 ) were significantly associated with AST levels. Although not genome-wide significant, these same SNPs were the top hits for ALT (P = 7.12 × 10-8 , P = 1.98 × 10-7 , and P = 1.81 × 10-7 , respectively). The strong correlation (r2  = 1.0) for these SNPs indicated a single hit in the PNPLA3 gene. No genome-wide significant associations were found for GGT.ConclusionsPNPLA3, a locus previously identified with ALT, AST, and nonalcoholic fatty liver disease in European and Japanese GWAS, is also associated with liver enzymes in populations of Mexican American ancestry

    Analysis of whole exome sequencing with cardiometabolic traits using family-based linkage and association in the IRAS Family Study

    Get PDF
    Family-based methods are a potentially powerful tool to identify trait-defining genetic variants in extended families, particularly when used to complement conventional association analysis. We utilized two-point linkage analysis and single variant association analysis to evaluate whole exome sequencing (WES) data from 1,205 Hispanic Americans (78 families) from the Insulin Resistance Atherosclerosis Family Study. WES identified 211,612 variants above the minor allele frequency threshold of ≥0.005. These variants were tested for linkage and/or association with 50 cardiometabolic traits after quality control checks. Two-point linkage analysis yielded 10,580,600 LOD scores with 1,148 LOD scores ≥3, 183 LOD scores ≥4, and 29 LOD scores ≥5. The maximal novel LOD score was 5.50 for rs2289043:T\u3eC, in UNC5C with subcutaneous adipose tissue volume. Association analysis identified 13 variants attaining genome-wide significance (pT in APOA5, and triglyceride levels (p=3.67×10-10). Overall, there was a 5.2-fold increase in the number of informative variants detected by WES compared to exome chip analysis in this population, nearly 30% of which were novel variants relative to dbSNP build 138. Thus, integration of results from two-point linkage and single-variant association analysis from WES data enabled identification of novel signals potentially contributing to cardiometabolic traits

    A genome-wide association study for diabetic nephropathy genes in African Americans

    Get PDF
    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD

    Mapping adipose and muscle tissue expression quantitative trait loci in African Americans to identify genes for type 2 diabetes and obesity

    Get PDF
    Relative to European Americans, type 2 diabetes (T2D) is more prevalent in African Americans (AAs). Genetic variation may modulate transcript abundance in insulin-responsive tissues and contribute to risk; yet published studies identifying expression quantitative trait loci (eQTLs) in African ancestry populations are restricted to blood cells. This study aims to develop a map of genetically regulated transcripts expressed in tissues important for glucose homeostasis in AAs, critical for identifying the genetic etiology of T2D and related traits. Quantitative measures of adipose and muscle gene expression, and genotypic data were integrated in 260 non-diabetic AAs to identify expression regulatory variants. Their roles in genetic susceptibility to T2D, and related metabolic phenotypes were evaluated by mining GWAS datasets. eQTL analysis identified 1,971 and 2,078 cis-eGenes in adipose and muscle, respectively. Cis-eQTLs for 885 transcripts including top cis-eGenes CHURC1, USMG5, and ERAP2, were identified in both tissues. 62.1% of top cis-eSNPs were within ±50kb of transcription start sites and cis-eGenes were enriched for mitochondrial transcripts. Mining GWAS databases revealed association of cis-eSNPs for more than 50 genes with T2D (e.g. PIK3C2A, RBMS1, UFSP1), gluco-metabolic phenotypes, (e.g. INPP5E, SNX17, ERAP2, FN3KRP), and obesity (e.g. POMC, CPEB4). Integration of GWAS meta-analysis data from AA cohorts revealed the most significant association for cis-eSNPs of ATP5SL and MCCC1 genes, with T2D and BMI, respectively. This study developed the first comprehensive map of adipose and muscle tissue eQTLs in AAs (publically accessible at https://mdsetaa.phs.wakehealth.edu) and identified genetically-regulated transcripts for delineating genetic causes of T2D, and related metabolic phenotypes
    corecore