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Summary

Family-based methods are a potentially powerful tool to identify trait-defining genetic variants in 

extended families, particularly when used to complement conventional association analysis. We 

utilized two-point linkage analysis and single variant association analysis to evaluate whole exome 
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sequencing (WES) data from 1,205 Hispanic Americans (78 families) from the Insulin Resistance 

Atherosclerosis Family Study. WES identified 211,612 variants above the minor allele frequency 

threshold of ≥0.005. These variants were tested for linkage and/or association with 50 

cardiometabolic traits after quality control checks. Two-point linkage analysis yielded 10,580,600 

LOD scores with 1,148 LOD scores ≥3, 183 LOD scores ≥4, and 29 LOD scores ≥5. The maximal 

novel LOD score was 5.50 for rs2289043:T>C, in UNC5C with subcutaneous adipose tissue 

volume. Association analysis identified 13 variants attaining genome-wide significance 

(p<5×10-08), with the strongest association between rs651821:C>T in APOA5, and triglyceride 

levels (p=3.67×10-10). Overall, there was a 5.2-fold increase in the number of informative variants 

detected by WES compared to exome chip analysis in this population, nearly 30% of which were 

novel variants relative to dbSNP build 138. Thus, integration of results from two-point linkage and 

single-variant association analysis from WES data enabled identification of novel signals 

potentially contributing to cardiometabolic traits.

Keywords

cohort study; genetic variance; Hispanic; novel variants

Introduction

Despite its success in the study of Mendelian disorders, family-based linkage analysis has 

shown a limited ability to identify genetic variants underlying complex traits or disease. 

Genome-wide association studies (GWAS) have largely become the discovery method of 

choice in the search for variants associated with complex traits or diseases (Ott et al., 2015). 

However, GWAS approaches have limitations. Notably, the majority of GWAS have been 

performed in European-derived populations, and thus far, the loci identified by these studies 

have, in many cases, provided limited information about trait- or disease-associated variants 

in other ethnicities (Bowden, 2011, Rosenberg et al., 2010). In addition, GWAS requires 

very large sample sizes to achieve sufficient power and, with few exceptions, primarily 

identifies common genetic variants which account for a small proportion of the heritability 

of most complex diseases (Manolio et al., 2009). A major advantage of family-based linkage 

analysis is its inherent potential to identify high impact variants, especially low frequency 

(i.e., minor allele frequency [MAF] > 0.005) variants in moderately-sized familial cohorts 

(Bowden, 2011). Additionally, family-based linkage can be a powerful tool even in 

moderately sized families for detecting loci near causal variants. The benefits of gene 

discovery efforts in families are well-known, particularly the ability to limit the number of 

causative genes and/or pathways involved in disease (Borecki and Province, 2008).

Whole exome sequencing (WES) has recently become a practical approach for identifying 

coding variants regardless of their frequency within a population (Albrechtsen et al., 2013, 

Li et al., 2010). When combined with family-based linkage analysis and complemented with 

association analysis, it can be a powerful, cost-effective method for elucidating variants of 

biomedical relevance (Gazal et al., 2016). Drawing upon the strengths of both methods, two-

point linkage analysis and conventional association analysis have been implemented in 

parallel to search for coding variants which substantially contribute to the variance within 
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traits. The ability of this integrated approach to precisely align SNP results for the two 

analyses is a significant advantage, highlighting variants which may show evidence of both 

nominal significance and moderate linkage at a given locus, uncovering variants that may 

not have been identified by either analysis alone.

Previously these approaches have been applied to exome chip data from 130 African 

American and Hispanic American families comprising the Insulin Resistance 

Atherosclerosis Family Study (IRASFS) (Hellwege et al., 2014) with a panel of 

cardiometabolic phenotypes. Here, we have explored the value of WES in 78 Hispanic 

American families from IRASFS. We hypothesized that the WES dataset would significantly 

expand the number of coding variations for analysis and identify novel coding variants 

associated and/or linked to cardiometabolic disease.

Materials and Methods

Samples

The Insulin Resistance Atherosclerosis Family Study (IRASFS) is a family-based study 

designed to identify genetic and environmental determinants of insulin resistance and 

visceral adiposity in Hispanic American and African American populations (Henkin et al., 

2003). This report involved DNA samples (N=1,221) from 78 families in the Hispanic 

American cohort from two locations: San Antonio, TX and San Luis Valley, CO. An 

extensive number of measurements relevant to cardiometabolic disease had previously been 

collected for these subjects, including those pertaining to glucose homeostasis, blood lipids, 

anthropometric traits, and fat deposition. All clinical and analysis sites secured IRB 

approval, and informed consent was obtained from all participants.

Exome sequencing

Exome sequencing was performed using the Illumina Nextera Expanded Exome Enrichment 

kit in conjunction with an Illumina HiSeq 2500 sequencer. This platform covered 62Mb of 

exonic sequence and, in comparison to other panels, increased the coverage of untranslated 

regions (UTRs) and micro RNAs (miRNAs), targeting 20,794 genes. Exome-enriched 

samples were amplified and the resulting library was loaded onto an Illumina flow cell for 

cluster generation (standard clonal amplification) using the Illumina TruSeq paired-end 

cluster kit v2. The flow cell was then transferred to the HiSeq 2500 instrument for parallel 

sequencing by synthesis using the Illumina TruSeq SBS kit for the HiSeq for 200 cycles. 

Forty-eight samples per flow cell were sequenced using paired-end reads and multiplexing 

six samples per lane. Additionally, a PhiX control was spiked into a flow cell lane.

Data processing

All sequence reads were passed through the Illumina Data Analysis Pipeline. Raw intensity 

files were converted to sequences with preliminary quality scores using intensity and 

phasing correction, base determination and preliminary quality score estimation. Sequencing 

image analysis and base calling of sequences into FASTQ files were performed using the 

instrument's Sequencing Control Software Real Time Analysis (SCS/RTA) software. 

Participant samples were demultiplexed using CASAVA v1.8. Quality control (QC) metrics 
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of the unmapped sequence reads were collected using FastQC (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). All sequence reads from samples 

passing QC criteria were mapped to the human genome reference sequence (hg19) using the 

BWA (Li and Durbin, 2009) software which was implemented in parallel on an 8,000 

processor computing cluster. BWA-generated alignments in Sequence Alignment/Map 

(SAM) format were converted to Binary SAM (BAM) format, sorted, and indexed using 

SAMtools (Li et al., 2009). Alignments from samples of the same subject were merged into 

a single BAM file to which the base call quality recalibration and indel realignment methods 

from the Genome Analysis Toolkit (GATK) (DePristo et al., 2011, McKenna et al., 2010) 

were applied. Coverage and other post-alignment QC metrics were collected using 

BEDTools (Quinlan and Hall, 2010), SAMtools, and GATK. SNP and INDEL variant 

discovery were carried out across several related and unrelated subjects simultaneously. Both 

mpileup from SAMtools and the UnifiedGenotyper method from GATK were used, together 

a combination of parameter-based hard-filtering and variant quality score recalibration 

(DePristo et al., 2011). Known annotations anchored to the proper human genome reference 

used for the alignments were added to the detected variant sites using ANNOVAR (Wang et 

al., 2010) and/or variant tools (San Lucas et al., 2012). Annotated variants and genotype 

calls were stored in bgzip (SAMtools)-compressed VCF files.

Low quality samples (N=3) with mean depth <20 were removed prior to analysis, as well as 

SNPs with fewer than 3000 reads. Restricting to variants with mean sample depth >5 

resulted in 555,651 SNPs of high quality. The final mean depth of the sequencing was 60.3X 

(range=4.2–106.4X). Supplementary Table 1 provides the transition/transversion (Ti/Tv) 

ratios broken down by SNP category for all variants included in the final analysis. The mean 

concordance with SNPs genotyped on the exome array (N=49,714) (Hellwege et al., 2014) 

was 99.93%. During quality control, one sample was removed for low concordance with 

SNPs on the exome array, one sample was removed for a substantial number of Mendelian 

inconsistencies, and an additional five samples were removed for inconsistencies between X 

and Y marker calls and participant gender. SHAPEIT2 (O'Connell et al., 2014) was used to 

perform Mendelian error checking with regard to established pedigree structures. Discordant 

genotypes were imputed to genotypes consistent with the pedigree structure, and individual 

SNPs with <95% efficiency were zeroed out. Samples found to have <95% overall efficiency 

by SHAPEIT2 (N=6) were excluded from the analysis.

Statistical analysis

SNP data were analyzed for both two-point family-based linkage and single variant 

association using Sequential Oligogenic Linkage Analysis Routines (SOLAR) (Almasy and 

Blangero, 1998). Briefly, both analyses were performed using the variance components 

method implemented in SOLAR, with age, sex, recruitment center (in the Hispanic cohorts), 

ancestry proportions (1-3 principal components depending on ethnic group) and BMI as 

covariates. The measured genotype analysis, which accounts for the non-independence of 

family members, involves incorporating each variant separately in a model as a measured 

covariate (the number of copies of the minor allele) evaluating genotype-specific differences 

in the trait means. These approaches have been documented in detail previously (Hellwege 

et al., 2016, 2014). Waist-to-hip ratio (WHR), waist circumference, visceral adipose tissue 
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area (VAT), and visceral to subcutaneous tissue ratio (VSR) were evaluated both with and 

without adjustment for BMI. Other measures of adiposity, including body adiposity index 

(BAI), subcutaneous adipose tissue area (SAT), and percent body fat, did not include BMI as 

a covariate. Supplementary Table 2 shows the phenotypes analyzed in this study, and where 

relevant, the transformations used to approximate normality. The presence of a low 

frequency variant encoding the G45R missense mutation in ADIPOQ (rs200573126:G>C) 

was included as a covariate for analyses involving adiponectin (ADP_G45R), as this variant 

is known to have a strong influence on adiponectin levels in this population (Hellwege et al., 

2015, Bowden et al., 2010). Additionally, three admixture proportions were included as 

covariates in the association analysis. Estimates of admixture proportion had previously 

been computed by maximum likelihood estimation (MLE) of individual ancestries in 

ADMIXTURE after pruning for linkage disequilibrium (LD) and assuming five ancestral 

populations (K=5) to produce admixture estimates for the largest number of samples 

(Hellwege et al., 2014). Three of the five variables considered were selected as 

representative of the variation in these Hispanic samples, as they encompassed the majority 

of the variability.

Results

Demographic information, along with biometric and lipid characteristics of the samples 

relevant to this analysis, is shown in Supplementary Table 3. Overall, 555,651 variants were 

identified from whole exome sequencing with average depth of 60.3X in up to 1,205 

Hispanic individuals from 78 families. To exclude variants found only in 12 individuals or 

less, a minor allele frequency (MAF) threshold was set at 0.5%, resulting in a set of 211,612 

SNPs for analysis. Of the variants meeting the MAF threshold, 11,973 (5.66%) were 

previously unknown (relative to dbSNP build 138).

Linkage

Linkage analysis for each variant with 50 metabolic traits yielded 10,580,600 LOD scores 

with 1,148 LOD scores greater than 3, 183 LOD scores greater than 4, and 29 LOD scores 

greater than 5. The highest LOD score was in a previously identified broad linkage peak on 

chromosome 3 for adiponectin levels (Bowden et al., 2010). Excluding variants linked with 

adiponectin (not adjusted for the G45R variant), there were 1,060 LOD scores greater than 

or equal to 3, 68 LOD scores greater than 4, and 20 LOD scores greater than 4.5 (Table 1). 

Of these variants, the most biologically relevant result was evidence of linkage with SAT on 

chromosome 4 (rs2289043:T>C; LOD=5.49; Figure 1). This missense mutation 

(Met721Thr) is within UNC5C, which encodes a member of the UNC5H netrin receptor 

family. Additional strong linkage signals included: rs35705:G>A (intronic) in GAS2L3 with 

gamma-glutamyl transpeptidase levels (LOD=5.33), rs116505219:A>C (missense; 

Phe51Cys) in AQP12B with adiponectin levels (LOD=5.30), and rs974334:G>C (intronic; 

GPX6) and rs139032867 (NP_653272.2:p.Gly133_Gly135del; FAM109A) with WHR 

adjusted for BMI (WHR_BMI; LOD=5.13 and 5.02, respectively).

In addition to specific variants, there were several notable broad linkage peaks. Most 

strikingly, a 67.5 Mb region of chromosome 10, including the majority of the p arm and a 
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large portion of the proximal q arm, showed evidence of linkage (LOD>3.0) with systolic 

blood pressure (SBP). The highest LOD score in this peak was 4.41 at rs74832669:G>T, a 

variant within the 3′-UTR of SLC18A3 (Solute Carrier Family 18, Member 3). This gene 

encodes a transmembrane protein which transfers acetylcholine into vesicles for secretion 

into extracellular space. Three additional variants within SLC18A3 (rs2269338:G>T, 

rs8175353:C>T, and rs1880675:C>T) had LOD scores above 4.0.

Additional broad linkage peaks included a region on chromosome 1 with acute insulin 

response (33 variants with LOD>3 in the peak and 3 with LOD>4; Supplementary Table 4) 

and a region on chromosome 12 with adiponectin levels (adjusted for G45R), both consistent 

with our previous findings (Hellwege et al., 2016). A smaller region on chromosome 6 was 

observed to show evidence of linkage with WHR_BMI. A number of variants within this 

linkage peak were located within human leukocyte antigen genes, including HLA-C, HLA-
DQA2, and HLA-DQB2. The GPX6 variant described above was also located within this 

region.

Association

Thirteen variants attained conventional genome-wide significance (p <5.0×10-8; Table 2), 

with the strongest association between rs651821:C>T, a 5′-UTR variant in APOA5, and 

triglyceride levels (p=3.67×10-10). Apolipoprotein AV is known to be involved in the 

regulation of plasma triglyceride levels (Pennacchio et al., 2002, 2001). Other genes 

containing variants significantly associated with cardiometabolic phenotypes included the 

well-documented PNPLA3 gene association with measures of hepatic steatosis adjusted for 

BMI (rs738408:C>T, p=1.92×10-9; rs738409:C>G, p=2.16×10-9) (Palmer et al., 2013, Cox 

et al., 2011, Wagenknecht et al., 2011), IMP4 with glucose effectiveness (rs72854959:G>T; 

p=4.25×10-9), and IDH1 with waist circumference (rs11554137:G>A; p=2.45×10-8) and 

BMI (rs11554137:G>A; p=3.86×10-8). The IDH1 associations have been observed 

previously in this dataset (Gao et al., 2015).

Variants with evidence of both linkage and association

One variant, rs71508052:G>A, was found to have evidence of both linkage (LOD>3.0) and 

genome-wide significant association (p<5.0×10-8) with SBP (LOD=3.74, p=2.52×10-9; 

Table 3). This variant maps to a locus on chromosome 10 purported to be a pseudogene 

predicted to have a regulatory function; however, this has not been functionally confirmed. 

Two additional genes contained variants showing both strong linkage and additional strong 

evidence of association with triglyceride levels: an intronic variant (rs189547099:G>C) in 

FNIP2 and a novel intronic variant (g.157997598C>G) in GLRB (p=6.31×10-8, LOD=3.13; 

both variants). Evaluation of suggestive variants (p=5.0×10-7; LOD>2.0) revealed six 

additional SNPs: rs2072560:C>T and rs651821:T>C in APOA5 with triglyceride levels 

(p=5.14×10-10, LOD=2.06; p=3.67×10-10, LOD=2.36, respectively), rs11554137:G>A in 

IDH1 with two adiposity-related traits (p=2.45×10-8, LOD=2.06, waist circumference; 

p=3.83×10-7, LOD=2.19, WHR_BMI), and three SNPs in MGRN1, SEC14L5, and ALG1 
(rs748293549:C>T, rs763273802:G>A, and rs780440168:C>A, respectively) with percent 

body fat (p=1.67×10-7, LOD=3.26; all variants).
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Adiponectin

The strongest evidence of both linkage and association in this sample was with the G45R 

variant in ADIPOQ with adiponectin levels (rs200573126:G>C; p=4.53×10-41, 

LOD=17.26). This finding is consistent with our previous results reporting a broad linkage 

peak on the distal q arm of chromosome 3 (Hellwege et al., 2015, Bowden et al., 2010, Guo 

et al., 2006). As expected, including the presence of the functional variant G45R as a 

covariate in the analyses greatly diminished the linkage peak (Supplementary Figure 1) and 

decreased the magnitude of association for variants within the region. This adjusted analysis 

identified rs116505219:A>C in AQP12B, an aquaporin, which showed strong linkage with 

adiponectin levels after adjustment for G45R (LOD=5.30; Table 1) as well as loci on 

chromosomes 10, 12, and 21 with LOD scores ≥4.5.

Comparison to exome chip

Of the 555K variants identified through sequencing of the exonic regions, 49,714 had 

previously been genotyped in Hispanics on the Illumina HumanExome Beadchip v1 

(Hellwege et al., 2014). Whole exome sequencing identified 505,937 variants which were 

not on the exome chip; however, the chip included an additional 31,845 variants not seen in 

the WES sequencing, 14,218 of which were non-exonic. Although there were over 30,000 

variants found in the exome chip dataset that were missing from the exome sequencing 

dataset, nearly half of these variants were non-exonic. In addition, the chip contains 4,761 

GWAS-enriched common variants, 3,468 ancestry informative markers, and 3,369 markers 

for identity-by-descent. A sizeable percentage of these subsets may not have been detectable 

by exome sequencing due to intergenic positioning.

Overall, there was a 5.2-fold increase in the number of informative variants detected by 

exome sequencing relative to the exome chip. Among the SNPs unique to the exome 

sequencing dataset, 151,175 (29.9%) were previously unidentified variants (dbSNP build 

138). Comparison of the top 25 variants showing evidence of strong linkage or association 

with results from the exome chip, as well as variants showing evidence of both linkage and 

association, revealed very little overlap, i.e. WES largely revealed new results. The only 

variants among the top signals also found on the exome chip were rs200573126:G>C 

(ADIPOQ), rs2289043:T>C (UNC5C), rs738409:C>G (PNPLA3), and rs4917:T>C 

(AHSG).

Discussion

In this study, we performed a family-based linkage and association analysis of WES data 

from 78 Hispanic American families with cardiometabolic traits. We were able to evaluate 

the performance of WES data compared to an earlier analysis of exome chip data in this 

Hispanic sample. The primary goal of this work was to identify novel loci, as well as known 

variants that were not included on the exome chip. Thus, we have evaluated 50 phenotypes 

related to anthropometry, glucose homeostasis, lipids, blood pressure, adiposity, hepatic fat 

and enzymes, and biomarkers. Considering the volume of results, some important 

observations can be noted. Most importantly, it is clear that many more exonic variants were 

identified using WES than the restricted catalog of SNPs included in chip-based genotyping. 
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This greatly enhances the capability to identify strong candidate SNPs for cardiometabolic 

traits. Consequently, this analysis greatly expands the results from this discovery analysis for 

potential replication in other cohorts.

A major advantage of using an approach which integrates results from both linkage and 

association analyses is the opportunity to identify variants within a population that, although 

they may not reach genome-wide significance, still show a strong signal of both linkage and 

association. Here, two such variants are found within FNIP2 and GLRB with triglyceride 

levels. FNIP2 suppresses PPARGC1a RNA expression and is expressed in liver, pancreas, 

and adipose tissue (Hasumi et al., 2008); GLRB encodes the β unit of the glycine receptor, a 

neurotransmitter-gated chloride channel. The presence of insulin increases the effectiveness 

of glycine at its receptor (Caraiscos et al., 2007). The variants within the two genes appear to 

be in LD (r2=1). It is noteworthy that the variant in GLRB is a novel SNP identified in this 

population by WES.

One of the more notable linkage results was a broad peak spanning the majority of the p arm 

and a large region of the proximal q arm of chromosome 10, showing evidence of linkage 

with SBP. Located within this peak, on the q arm, is SLC18A3, encoding a 57 kDa vesicular 

acetylcholine transporter (VAchT) family protein which assists in moving acetylcholine into 

secretory vesicles for extracellular release. The four variants showing strong linkage with 

SBP are located throughout the gene (two in the 3′-UTR, one in the 5′-UTR, and one 

synonymous coding variant). Previous reports have indicated that peripheral cholinergic 

systems are down-regulated during systemic inflammation (Lips et al., 2007), a co-morbidity 

of cardiometabolic disease, and that deterioration of cholinergic anti-inflammatory pathways 

promotes the development of hypertensive target organ damage, suggesting dysfunction of 

the VAchT (Li et al., 2011). We further explored the linkage between variants within 

SLC18A3 and SBP by performing family-based linkage analysis. Of the two families 

showing nominal evidence of linkage, one appeared to show a distinct pattern of segregation 

of the minor allele with higher SBP values (mean SBP: major allele = 133.56, minor allele = 

182.83). The number of carriers in the first family was low (N = 6), and the pattern was not 

repeated in the second family. However, the strongest evidence of linkage in our prior 

publication on exome chip data from this cohort, (rs7412 in APOE with plasma 

apolipoprotein B) also did not show strong family-specific linkage (Hellwege et al., 2014). It 

is also noteworthy that within this broad linkage peak, there is an intronic variant 

(rs71508052:G>A) showing evidence of both linkage and genome-wide significant 

association with SBP. Interestingly, the variant is located within a predicted pseudogene of 

unknown function, NUTM2HP.

While we did observe linkage peaks on chromosomes 1 (acute insulin response) and 12 

(G45R-adjusted adiponectin levels) consistent with our previous report (Hellwege et al., 

2016), the signals in the current report were not found to be as strong. This is likely due to 

the difference in sample sizes between the two studies; the exome chip analysis included up 

to 1,414 participants from 90 families compared with 1,205 samples from 78 families in the 

exome sequencing analysis. Nonetheless, the long arm of chromosome 1 is of particular 

interest, as linkage of this region with type 2 diabetes and metabolic syndrome has been 

documented in multiple populations, including Hispanics (Prokopenko et al., 2009, 
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Langefeld et al., 2004). Supplementary Table 4 lists the variants included within the 

chromosome 1q linkage peak. Although none of the variants listed in the table were found in 

previous reports of linkage with acute insulin response, a different variant within F5 was 

reported to show genome-wide association with fasting serum levels of ferritin, one of a 

number of biomarkers included in a model to predict the 5-year risk of type 2 diabetes 

(Ahluwalia et al., 2015).

The single variant showing the strongest evidence of linkage with SAT, rs2289043:T>C, is 

located within UNC5C. This gene encodes a member of the UNC5H family of receptors 

which has high protein expression levels in the luminal membranes of the gall bladder, 

intestine, and kidney (Uhlén et al., 2015). UNC5C receptors bind netrin-1, a protein involved 

in both cell migration during neural development and macrophage retention in adipose 

tissue. Netrins have cell type-specific attractant and repellant properties; the repellant 

response is mediated by UNC5H and adenosine A2 B receptors (Corset et al., 2000, 

Ackerman et al., 1997, Leonardo et al., 1997). Recently, a suggestive association between an 

intronic variant (rs11097470:T>C) in UNC5C and energy balance (p=5.14×10-06) was 

reported in Hispanic children (Comuzzie et al., 2012). High expression levels of netrin-1 

have also been found in obese, but not lean, adipose tissue in both humans and mice 

(Ramkhelawon et al., 2014). Taken together, this information suggests that alterations in 

UNC5C expression or structure could affect subcutaneous adipose tissue volume.

Several variants of biological relevance reached genome-wide significant association. As 

mentioned above, specific variants in APOA5 are well known to have substantial effects on 

plasma triglyceride levels, particularly in African American and Hispanic populations 

(Pennacchio et al., 2002). Consistent with our previous reports and those of others, variants 

within PNPLA3, a triacylglycerol lipase, were found to have a significant association with 

measures of hepatic density (Palmer et al., 2013, Cox et al., 2011, Wagenknecht et al., 2011, 

Romeo et al., 2008). PNPLA3 is thought to be membrane-bound and may mediate energy 

storage and usage in adipocytes. IDH1 (isocitrate dehydrogenase 1) is a gene associated with 

waist circumference in a previous report analyzing GWAS and exome chip data (Gao et al., 

2015), although the variant identified was different than that reported in this study. 

Mutations in IDH1 have primarily been examined for their role in the pathogenesis of 

cancers, particularly glioma and acute myeloid leukemia (Fujii et al., 2016). However, 

results from rodent models suggest that there may be a direct correlation between IDPc 

(cytosolic NAPD+-dependent isocitrate dehydrogenase) and adipose tissue levels and that 

IDPc may be a necessary cofactor during adipogenesis (Koh et al., 2004).

Compared with our previous work using the HumanExome Bead Chip (Hellwege et al., 

2014), exome sequencing identified more than five times the number of polymorphic SNPs 

in this population. More importantly, use of whole exome sequencing allowed for discovery 

of novel variants which accounted for nearly 30% of identified variants. While the exome 

chip did provide some insight into variants linked or associated with cardiometabolic 

disease, exome sequencing largely broadens that knowledge by vastly increasing the number 

of potential variants.
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This study targeted genetic factors related to metabolic and cardiovascular disease in a 

Hispanic population. The majority of cardiometabolic genomic studies have been carried out 

in European-derived populations (Bowden, 2011). Hispanics are underrepresented in the 

type 2 diabetes literature, despite an increased prevalence of type 2 diabetes in the United 

States for Hispanics compared with non-Hispanic whites (12.8% vs. 7.6% as of 2014) 

(CDC/NCHS, 2016). In 2013, the most current data available, cardiovascular disease was the 

2nd leading cause of death among Hispanics, with diabetes ranked as the 5th leading cause 

(Below and Parra, 2016, Heron, 2016). This report adds to the available literature on 

cardiometabolic disease in Hispanic populations.

This study, however, was not without limitations. Due to the cost of whole exome 

sequencing and the size of the study population, the sample used was relatively smaller in 

size, which can decrease statistical power. The analysis was limited to exons, miRNA, and 

untranslated regions; however, it is becoming clearer that many causal variants are intergenic 

or may be located in various non-coding RNAs other than miRNAs. It would be beneficial 

for future experiments to take advantage of family-based linkage and single-variant 

association analyses of whole genome sequencing data to identify the specific variants 

which significantly contribute to cardiovascular and metabolic diseases within this 

population.

In conclusion, WES data provided insights that were not able to be observed from exome 

chip data analysis and thus enabled identification of novel signals contributing to 

cardiometabolic traits. Further, the integration of results from two-point linkage and single-

variant association analysis allowed for recognition of variants that may otherwise have been 

missed with either individual analysis separately. This study provided evidence that whole 

exome sequencing data, in combination with family-based linkage and association analyses, 

is a valuable tool in the discovery and identification of novel variants in complex disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Linkage plot for subcutaneous adipose tissue measurements. Note the peak on chromosome 

4; the strongest linkage signal is rs2289043 in UNC5C.
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