94 research outputs found

    NMR evaluation of ammonium ion movement within a unimolecular G-quadruplex in solution

    Get PDF
    d[G4(T4G4)3] has been folded into a unimolecular G-quadruplex in the presence of 15NH4+ ions. NMR spectroscopy confirmed that its topology is the same as the solution state structure determined earlier by Wang and Patel (J. Mol. Biol., 1995; 251: 76–94) in the presence of Na+ ions. The d[G4(T4G4)3] G-quadruplex exhibits four G-quartets with three 15NH4+-ion-binding sites (O1, I and O2). Quantitative analysis utilizing 15NH4+ ions as a NMR probe clearly demonstrates that there is no unidirectional 15NH4+ ion movement through the central cavity of the G-quadruplex. 15NH4+ ions move back and forth between the binding sites within the G-quadruplex and exchange with ions in bulk solution. 15NH4+ ion movement is controlled by the thermodynamic preferences of individual binding sites, steric restraints of the G-quartets for 15NH4+ ion passage and diagonal versus edge-type arrangement of the T4 loops. The movement of 15NH4+ ions from the interior of the G-quadruplex to bulk solution is faster than exchange within the G-quadruplex. The structural details of the G-quadruplex define stiffness of individual G-quartets that intimately affects 15NH4+ ion movement. The stiffness of G-quartets and steric hindrance imposed by thymine residues in the loops contribute to the 5-fold difference in the exchange rate constants through the outer G-quartets

    Bacterial protein HU dictates the morphology of DNA condensates produced by crowding agents and polyamines

    Get PDF
    Controlling the size and shape of DNA condensates is important in vivo and for the improvement of nonviral gene delivery. Here, we demonstrate that the morphology of DNA condensates, formed under a variety of conditions, is shifted completely from toroids to rods if the bacterial protein HU is present during condensation. HU is a non-sequence-specific DNA binding protein that sharply bends DNA, but alone does not condense DNA into densely packed particles. Less than one HU dimer per 225 bp of DNA is sufficient to completely control condensate morphology when DNA is condensed by spermidine. We propose that rods are favored in the presence of HU because rods contain sharply bent DNA, whereas toroids contain only smoothly bent DNA. The results presented illustrate the utility of naturally derived proteins for controlling the shape of DNA condensates formed in vitro. HU is a highly conserved protein in bacteria that is implicated in the compaction and shaping of nucleoid structure. However, the exact role of HU in chromosome compaction is not well understood. Our demonstration that HU governs DNA condensation in vitro also suggests a mechanism by which HU could act as an architectural protein for bacterial chromosome compaction and organization in vivo

    Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A·A base pairing and a putative structure of the coralyne-induced homo-adenine duplex

    Get PDF
    Coralyne is an alkaloid drug that binds homo-adenine DNA (and RNA) oligonucleotides more tightly than it does Watson–Crick DNA. Hud’s laboratory has shown that poly(dA) in the presence of coralyne forms an anti-parallel duplex, however attempts to determine the structure by NMR spectroscopy and X-ray crystallography have been unsuccessful. Assuming adenine–adenine hydrogen bonding between the two poly(dA) strands, we constructed 40 hypothetical homo-(dA) anti-parallel duplexes and docked coralyne into the six most favorable duplex structures. The two most stable structures had trans glycosidic bonds, but distinct pairing geometries, i.e. either Watson–Crick Hoogsteen (transWH) or Watson–Crick Watson–Crick (transWW) with stability of transWH > transWW. To narrow down the possibilities, 7-deaza adenine base substitutions (dA→7) were engineered into homo-(dA) sequences. These substitutions significantly reduced the thermal stability of the coralyne-induced homo-(dA) structure. These experiments strongly suggest the involvement of N7 in the coralyne-induced A·A base pairs. Moreover, due to the differential effect on melting as a function of the location of the dA→7 mutations, these results are consistent with the N1–N7 base pairing of the transWH pairs. Together, the simulation and base substitution experiments predict that the coralyne-induced homo-(dA) duplex structure adopts the transWH geometry

    Condensation of oligonucleotides assembled into nicked and gapped duplexes: potential structures for oligonucleotide delivery

    Get PDF
    The condensation of nucleic acids into well-defined particles is an integral part of several approaches to artificial cellular delivery. Improvements in the efficiency of nucleic acid delivery in vivo are important for the development of DNA- and RNA-based therapeutics. Presently, most efforts to improve the condensation and delivery of nucleic acids have focused on the synthesis of novel condensing agents. However, short oligonucleotides are not as easy to condense into well-defined particles as gene-length DNA polymers and present particular challenges for discrete particle formation. We describe a novel strategy for improving the condensation and packaging of oligonucleotides that is based on the self-organization of half-sliding complementary oligonucleotides into long duplexes (ca. 2 kb). These non-covalent assemblies possess single-stranded nicks or single-stranded gaps at regular intervals along the duplex backbones. The condensation behavior of nicked- and gapped-DNA duplexes was investigated using several cationic condensing agents. Transmission electron microscopy and light-scattering studies reveal that these DNA duplexes condense much more readily than short duplex oligonucleotides (i.e. 21 bp), and more easily than a 3 kb plasmid DNA. The polymeric condensing agents, poly-l-lysine and polyethylenimine, form condensates with nicked- and gapped-DNA that are significantly smaller than condensates formed by the 3 kb plasmid DNA. These results demonstrate the ability for DNA structure and topology to alter nucleic acid condensation and suggest the potential for the use of this form of DNA in the design of vectors for oligonucleotide and gene delivery. The results presented here also provide new insights into the role of DNA flexibility in condensate formation

    Multiple prebiotic metals mediate translation.

    Get PDF
    Today, Mg2+ is an essential cofactor with diverse structural and functional roles in life's oldest macromolecular machine, the translation system. We tested whether ancient Earth conditions (low O2, high Fe2+, and high Mn2+) can revert the ribosome to a functional ancestral state. First, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) was used to compare the effect of Mg2+, Fe2+, and Mn2+ on the tertiary structure of rRNA. Then, we used in vitro translation reactions to test whether Fe2+ or Mn2+ could mediate protein production, and quantified ribosomal metal content. We found that (i) Mg2+, Fe2+, and Mn2+ had strikingly similar effects on rRNA folding; (ii) Fe2+ and Mn2+ can replace Mg2+ as the dominant divalent cation during translation of mRNA to functional protein; and (iii) Fe and Mn associate extensively with the ribosome. Given that the translation system originated and matured when Fe2+ and Mn2+ were abundant, these findings suggest that Fe2+ and Mn2+ played a role in early ribosomal evolution

    Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding

    Get PDF
    A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (Tm ≈ 60°C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (Ka >107 M−1), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson–Crick and A·A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand ‘critical concentration’. The ligands described here may also find biological or medicinal applications, owing to the 3′-polyadenylation of mRNA in living cells

    Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution

    Get PDF
    Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities

    Towards synthetic biology: the replication of synthetic polymers

    Get PDF
    Issued as final reportEmory Universit

    Intercalation mediated assembly and the first informational polymers of life

    Get PDF
    Issued as final reportUnited States. National Aeronautics and Space Administratio
    corecore