126 research outputs found

    The Role of Source Coherence in Atom Interferometery

    Full text link
    The role of source cloud spatial coherence in a Mach-Zehnder type atom interferometer is experimentally investigated. The visibility and contrast of a Bose-Einstein condensate (BEC) and three thermal sources with varying spatial coherence are compared as a function of interferometer time. At short times, the fringe visibility of a BEC source approaches 100 % nearly independent of pi pulse efficiency, while thermal sources have fringe visibilities limited to the mirror efficiency. More importantly for precision measurement systems, the BEC source maintains interference at interferometer times significantly beyond the thermal source

    80hk Momentum Separation with Bloch Oscillations in an Optically Guided Atom Interferometer

    Full text link
    We demonstrate phase sensitivity in a horizontally guided, acceleration-sensitive atom interferometer with a momentum separation of 80hk between its arms. A fringe visibility of 7% is observed. Our coherent pulse sequence accelerates the cold cloud in an optical waveguide, an inherently scalable route to large momentum separation and high sensitivity. We maintain coherence at high momentum separation due to both the transverse confinement provided by the guide, and our use of optical delta-kick cooling on our cold-atom cloud. We also construct a horizontal interferometric gradiometer to measure the longitudinal curvature of our optical waveguide.Comment: 6 pages, 6 figure

    A Bright Solitonic Matter-Wave Interferometer

    Full text link
    We present the first realisation of a solitonic atom interferometer. A Bose-Einstein condensate of 1×1041\times10^4 atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the ss-wave scattering length of the 85^{85}Rb atoms is tuned to a small negative value. This attractive atomic interaction then balances the inherent matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder interferometer is constructed by driving Bragg transitions with the use of an optical lattice co-linear with the waveguide. Matter wave propagation and interferometric fringe visibility are compared across a range of ss-wave scattering values including repulsive, attractive and non-interacting values. The solitonic matter wave is found to significantly increase fringe visibility even compared with a non-interacting cloud.Comment: 6 pages, 4 figure

    A quantum sensor: simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate

    Full text link
    A Bose-Einstein condensate is used as an atomic source for a high precision sensor. A 5×1065\times 10^6 atom F=1 spinor condensate of 87^{87}Rb is released into free fall for up to 750750ms and probed with a Mach-Zehnder atom interferometer based on Bragg transitions. The Bragg interferometer simultaneously addresses the three magnetic states, mf=1,0,1\left| m_f=1,0,-1 \right\rangle, facilitating a simultaneous measurement of the acceleration due to gravity with an asymptotic precision of 2.1×1092.1\times 10^{-9}Δ\Deltag/g and the magnetic field gradient to a precision 88pT/m

    Non-destructive shadowgraph imaging of ultracold atoms

    Full text link
    An imaging system is presented that is capable of far-detuned non-destructive imaging of a Bose-Einstein condensate with the signal proportional to the second spatial derivative of the density. Whilst demonstrated with application to 85Rb^{85}\text{Rb}, the technique generalizes to other atomic species and is shown to be capable of a signal to noise of 25{\sim}25 at 11GHz detuning with 100100 in-trap images showing no observable heating or atom loss. The technique is also applied to the observation of individual trajectories of stochastic dynamics inaccessible to single shot imaging. Coupled with a fast optical phase lock loop, the system is capable of dynamically switching to resonant absorption imaging during the experiment.Comment: 4 pages, 5 figure

    Assessing methods for dealing with treatment switching in clinical trials: A follow-up simulation study

    Get PDF
    When patients randomised to the control group of a randomised controlled trial are allowed to switch onto the experimental treatment, intention-to-treat analyses of the treatment effect are confounded because the separation of randomised groups is lost. Previous research has investigated statistical methods that aim to estimate the treatment effect that would have been observed had this treatment switching not occurred and has demonstrated their performance in a limited set of scenarios. Here, we investigate these methods in a new range of realistic scenarios, allowing conclusions to be made based upon a broader evidence base. We simulated randomised controlled trials incorporating prognosis-related treatment switching and investigated the impact of sample size, reduced switching proportions, disease severity, and alternative data-generating models on the performance of adjustment methods, assessed through a comparison of bias, mean squared error, and coverage, related to the estimation of true restricted mean survival in the absence of switching in the control group. Rank preserving structural failure time models, inverse probability of censoring weights, and two-stage methods consistently produced less bias than the intentionto-treat analysis. The switching proportion was confirmed to be a key determinant of bias: sample size and censoring proportion were relatively less important. It is critical to determine the size of the treatment effect in terms of an acceleration factor (rather than a hazard ratio) to provide information on the likely bias associated with rank-preserving structural failure time model adjustments. In general, inverse probability of censoring weight methods are more volatile than other adjustment methods

    Modulational instability of spinor condensates

    Full text link
    We demonstrate, analytically and numerically, that the ferromagnetic phase of the spinor Bose-Einstein condenstate may experience modulational instability of the ground state leading to a fragmentation of the spin domains. Together with other nonlinear effects in the atomic optics of ultra-cold gases (such as coherent photoassociation and four-wave mixing) this effect provides one more analogy between coherent matter waves and light waves in nonlinear optics.Comment: 4 pages, 4 figures. Accepted for Phys. Rev. A Rapid Communication

    Why momentum width matters for atom interferometry with Bragg pulses

    Full text link
    We theoretically consider the effect of the atomic source's momentum width on the efficiency of Bragg mirrors and beamsplitters and, more generally, on the phase sensitivity of Bragg pulse atom interferometers. By numerical optimization, we show that an atomic cloud's momentum width places a fundamental upper bound on the maximum transfer efficiency of a Bragg mirror pulse, and furthermore limits the phase sensitivity of a Bragg pulse atom interferometer. We quantify these momentum width effects, and precisely compute how mirror efficiencies and interferometer phase sensitivities vary as functions of Bragg order and source type. Our results and methodology allow for an efficient optimization of Bragg pulses and the comparison of different atomic sources, and will help in the design of large momentum transfer Bragg mirrors and beamsplitters for use in atom-based inertial sensors.Comment: 25 pages, 11 figure
    corecore