126 research outputs found
The Role of Source Coherence in Atom Interferometery
The role of source cloud spatial coherence in a Mach-Zehnder type atom
interferometer is experimentally investigated. The visibility and contrast of a
Bose-Einstein condensate (BEC) and three thermal sources with varying spatial
coherence are compared as a function of interferometer time. At short times,
the fringe visibility of a BEC source approaches 100 % nearly independent of pi
pulse efficiency, while thermal sources have fringe visibilities limited to the
mirror efficiency. More importantly for precision measurement systems, the BEC
source maintains interference at interferometer times significantly beyond the
thermal source
80hk Momentum Separation with Bloch Oscillations in an Optically Guided Atom Interferometer
We demonstrate phase sensitivity in a horizontally guided,
acceleration-sensitive atom interferometer with a momentum separation of 80hk
between its arms. A fringe visibility of 7% is observed. Our coherent pulse
sequence accelerates the cold cloud in an optical waveguide, an inherently
scalable route to large momentum separation and high sensitivity. We maintain
coherence at high momentum separation due to both the transverse confinement
provided by the guide, and our use of optical delta-kick cooling on our
cold-atom cloud. We also construct a horizontal interferometric gradiometer to
measure the longitudinal curvature of our optical waveguide.Comment: 6 pages, 6 figure
A Bright Solitonic Matter-Wave Interferometer
We present the first realisation of a solitonic atom interferometer. A
Bose-Einstein condensate of atoms of rubidium-85 is loaded into a
horizontal optical waveguide. Through the use of a Feshbach resonance, the
-wave scattering length of the Rb atoms is tuned to a small negative
value. This attractive atomic interaction then balances the inherent
matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder
interferometer is constructed by driving Bragg transitions with the use of an
optical lattice co-linear with the waveguide. Matter wave propagation and
interferometric fringe visibility are compared across a range of -wave
scattering values including repulsive, attractive and non-interacting values.
The solitonic matter wave is found to significantly increase fringe visibility
even compared with a non-interacting cloud.Comment: 6 pages, 4 figure
A quantum sensor: simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate
A Bose-Einstein condensate is used as an atomic source for a high precision
sensor. A atom F=1 spinor condensate of Rb is released
into free fall for up to ms and probed with a Mach-Zehnder atom
interferometer based on Bragg transitions. The Bragg interferometer
simultaneously addresses the three magnetic states, , facilitating a simultaneous measurement of the acceleration due
to gravity with an asymptotic precision of g/g and
the magnetic field gradient to a precision pT/m
Non-destructive shadowgraph imaging of ultracold atoms
An imaging system is presented that is capable of far-detuned non-destructive
imaging of a Bose-Einstein condensate with the signal proportional to the
second spatial derivative of the density. Whilst demonstrated with application
to , the technique generalizes to other atomic species and is
shown to be capable of a signal to noise of at GHz detuning with
in-trap images showing no observable heating or atom loss. The technique
is also applied to the observation of individual trajectories of stochastic
dynamics inaccessible to single shot imaging. Coupled with a fast optical phase
lock loop, the system is capable of dynamically switching to resonant
absorption imaging during the experiment.Comment: 4 pages, 5 figure
Assessing methods for dealing with treatment switching in clinical trials: A follow-up simulation study
When patients randomised to the control group of a randomised controlled trial are allowed to switch onto the
experimental treatment, intention-to-treat analyses of the treatment effect are confounded because the separation of
randomised groups is lost. Previous research has investigated statistical methods that aim to estimate the treatment
effect that would have been observed had this treatment switching not occurred and has demonstrated their
performance in a limited set of scenarios. Here, we investigate these methods in a new range of realistic scenarios,
allowing conclusions to be made based upon a broader evidence base. We simulated randomised controlled
trials incorporating prognosis-related treatment switching and investigated the impact of sample size, reduced
switching proportions, disease severity, and alternative data-generating models on the performance of adjustment
methods, assessed through a comparison of bias, mean squared error, and coverage, related to the estimation of true
restricted mean survival in the absence of switching in the control group. Rank preserving structural failure time models,
inverse probability of censoring weights, and two-stage methods consistently produced less bias than the intentionto-treat
analysis. The switching proportion was confirmed to be a key determinant of bias: sample size and censoring
proportion were relatively less important. It is critical to determine the size of the treatment effect in terms of an
acceleration factor (rather than a hazard ratio) to provide information on the likely bias associated with rank-preserving
structural failure time model adjustments. In general, inverse probability of censoring weight methods are more volatile
than other adjustment methods
Modulational instability of spinor condensates
We demonstrate, analytically and numerically, that the ferromagnetic phase of
the spinor Bose-Einstein condenstate may experience modulational instability of
the ground state leading to a fragmentation of the spin domains. Together with
other nonlinear effects in the atomic optics of ultra-cold gases (such as
coherent photoassociation and four-wave mixing) this effect provides one more
analogy between coherent matter waves and light waves in nonlinear optics.Comment: 4 pages, 4 figures. Accepted for Phys. Rev. A Rapid Communication
Why momentum width matters for atom interferometry with Bragg pulses
We theoretically consider the effect of the atomic source's momentum width on
the efficiency of Bragg mirrors and beamsplitters and, more generally, on the
phase sensitivity of Bragg pulse atom interferometers. By numerical
optimization, we show that an atomic cloud's momentum width places a
fundamental upper bound on the maximum transfer efficiency of a Bragg mirror
pulse, and furthermore limits the phase sensitivity of a Bragg pulse atom
interferometer. We quantify these momentum width effects, and precisely compute
how mirror efficiencies and interferometer phase sensitivities vary as
functions of Bragg order and source type. Our results and methodology allow for
an efficient optimization of Bragg pulses and the comparison of different
atomic sources, and will help in the design of large momentum transfer Bragg
mirrors and beamsplitters for use in atom-based inertial sensors.Comment: 25 pages, 11 figure
- …
