4,012 research outputs found

    Tribo-Mechanical Investigation of the Functional Components used in Flexible Energy Harvesting Devices

    Get PDF
    During the previous decade, the development of energy harvesting devices based on piezoelectric materials has garnered great interest. The ability to capture ambient mechanical energy and convert it to useable electricity is a potential solution to the ever-growing energy crisis. One of the most attractive functional materials used in these devices is zinc oxide (ZnO). This material\u27s relative low cost and ease of large-area processing has spurred numerous device designs based around it. The ability to grow ZnO nanostructures of various geometries with low-temperature chemical methods makes this material even more attractive for flexible devices. Although numerous device architectures have been developed, the long-term mechanical reliability has not been addressed.;This work focuses on the fabrication and mechanical failure analysis of the flexible components typically used in piezoelectric energy harvesting devices. A three-phase iterative design process was used to fabricate prototypical piezoelectric nanogenerators, based on ZnO nanowires. An output of several millivolts was achieved under normal contact and microtensile loading, but device failure occurred after only a few loading cycles, in all cases. Ex situ failure analysis confirmed the primary sources of failure, which became the focus of further, component-level studies. Failure was primarily seen in the flexible electrodes of the nanogenerating devices, but was also observed in the functional piezoelectric layer itself.;Flexible electrodes comprised of polyester substrates with transparent conductive oxide (TCO) coatings were extensively investigated under various loading scenarios to mimic tribo-mechanical stresses applied during fabrication and use in flexible contact-based devices. The durability of these films was explored using microtensile testing, spherical nanoindentation, controlled mechanical buckling, stress corrosion cracking, and shear-contact reciprocating wear. The electro-mechanical performance and reliability of functional ZnO films and nanostructures were also studied. ZnO was deposited on rigid and flexible substrates for investigations including controlled buckling, and contact-based rolling/sliding scenarios. Numerous in situ and ex situ analytical techniques were used to characterize component-level failure mechanisms, including two-probe electrical resistance, optical microscopy, SEM, AFM, and stylus profilometry.;Experimental results show that there is a strong relation between crack onset strain values, during microtensile and controlled bucking loading, and coating thickness. Relatively high crack onset values were observed for both thinner coatings and those patterned using photolithography and wet chemical etching techniques. Tribological experiments show that although piezoelectric ZnO films produce a measurable electrical output during combined rolling/sliding contact, cohesive wear of the oxide and adhesive wear between oxide and substrate is present and detrimental to sustained film functionality

    Randomized Polypill Crossover Trial in People Aged 50 and Over

    Get PDF
    PMCID: PMC3399742This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Incorporating DNA Sequencing into Current Prenatal Screening Practice for Down's Syndrome

    Get PDF
    PMCID: PMC3604109This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    A novel putter design to minimise range variability in golf putts

    Get PDF
    Putting accounts for more shots in a round of golf than any other type of play. The percentage of putts holed decreases as putt length increases, because golfers struggle to achieve a consistent range and direction. Range variation has been partly attributed to the ball striking the club face away from the central plane of the putter face. Tests have shown a 30mm off-centre impact can reduce the roll distance of a putt by 13%. In this paper, changes in mass distribution of the putter body and the addition of a flexible striking surface are considered. Physical testing and Finite Element Analysis are used to produce a club design with more consistent roll distance. Redistribution of mass reduced the roll distance variation across the clubface. Combining this with a flexible impact surface reduced the variation between a central impact and one 20mm from centre to just 1%. The proposed design could significantly reduce distance variation; aiding golfers in holing putts. Future work will optimise the design and validate through physical prototyping

    Reconciling the Evidence on Serum Homocysteine and Ischaemic Heart Disease: A Meta-Analysis

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The Manchester Color Wheel: development of a novel way of identifying color choice and its validation in healthy, anxious and depressed individuals

    Get PDF
    Abstract Background For the purposes of our research programme we needed a simple, reliable and validated method for allowing choice of a color in response to a series of questions. On reviewing the literature no such instrument was available and this study aimed to rectify this situation. This was achieved by developing a simple method of presenting a series of colors to people validating it in healthy volunteers and in individuals where color choice might be distorted, namely anxiety and depression. Methods A series of different presentations of four shades of eight colors and grey, as well as black and white were evaluated. 'Mood', 'favourite' and 'drawn to' colors were assessed in 105 healthy, 108 anxious and 110 depressed participants. The positive, neutral or negative attribution of these colors was recorded in a further 204 healthy volunteers. Results The circular presentation of colors was most favoured (Color Wheel). Yellow was the most 'drawn to' color and blue the commonest 'favourite' color in all subjects. Yellow was most often associated with a normal mood and grey with an anxious or depressed mood. Different shades of the same color had completely different positive or negative connotations. Reproducibility was exceptionally high when color choice was recorded in positive, neutral or negative terms. Conclusions The Color Wheel could be used to assess health status, mood or even treatment outcome in a variety of clinical situations. It may also have utility in circumstances where verbal communication may not be optimal, such as with children.</p

    Occupational Exposure to Hydrazine and Subsequent Risk of Lung Cancer: 50-Year Follow-Up

    Get PDF
    Hydrazine is carcinogenic in animals, but there is inadequate evidence to determine if it is carcinogenic in humans. This study aimed to evaluate the association between hydrazine exposure and the risk of lung cancer.The cause specific mortality rates of a cohort of 427 men who were employed at an English factory that produced hydrazine between 1945 and 1971 were compared with national mortality rates.By the end of December 2012 205 deaths had occurred. For men in the highest exposure category with greater than two years exposure and after more than ten years since first exposure the relative risks compared with national rates were: 0.85 (95% CI: 0.18-2.48) for lung cancer, 0.61 (95% CI: 0.07-2.21) for cancers of the digestive system, and 0.44 (95% CI: 0.05-1.57) for other cancers.After 50 years of follow up, the results provide no evidence of an increased risk of death from lung cancer or death from any other cause

    The influence of piston ring geometry and topography on friction

    Get PDF
    This article provides solution for isothermal mixed hydrodynamic conjunction of the compression ring to cylinder liner. This is obtained using the average flow model representation of Reynolds equation based on pressure- and shear-induced flow factors. In particular, the effects of compression ring axial profile along its face-width and surface topography of contiguous solids are investigated. It is shown that ring geometry may be optimized to improve lubrication, whilst care should be taken in order to avoid oil loss or degradation resulting from any loss of sealing. In predicting friction, it is shown that appropriate surface parameters should be used in-line with the state of wear of the ring. For a new ring against a plateau honed liner, boundary friction contribution during the initial running-in wear phase should be predicted according to the average asperity peak heights protruding above the plateau, whilst the plateau height also takes into account the valleys within the surface roughness or grooves created by any cross-hatch honing would be the appropriate measure of topography for worn rings. The main contributions of the article are in providing an analytic solution as well investigation of ring face-width geometry and effect of wear upon friction. However, it is acknowledged that generated heat, inlet boundary starvation and circumferential non-conformity of ring to the bore surface would affect the film thickness and exacerbate generated friction accordingly. These further considerations would require a numerical solution, rather than an analytical one presented here
    corecore