17 research outputs found

    Fibrils Colocalize Caspase-3 with Procaspase-3 to Foster Maturation*

    No full text
    Most proteases are expressed as inactive precursors, or zymogens, that become activated by limited proteolysis. We previously identified a small molecule, termed 1541, that dramatically promotes the maturation of the zymogen, procaspase-3, to its mature form, caspase-3. Surprisingly, compound 1541 self-assembles into nanofibrils, and localization of procaspase-3 to the fibrils promotes activation. Here, we interrogate the biochemical mechanism of procaspase-3 activation on 1541 fibrils in addition to proteogenic amyloid-β(1-40) fibrils. In contrast to previous reports, we find no evidence that procaspase-3 alone is capable of self-activation, consistent with its fate-determining role in executing apoptosis. In fact, mature caspase-3 is >10(7)-fold more active than procaspase-3, making this proenzyme a remarkably inactive zymogen. However, we also show that fibril-induced colocalization of trace amounts of caspase-3 or other initiator proteases with procaspase-3 dramatically stimulates maturation of the proenzyme in vitro. Thus, similar to known cellular signaling complexes, these synthetic or natural fibrils can serve as platforms to concentrate procaspase-3 for trans-activation by upstream proteases

    Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry

    No full text
    The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed “click chemistry”, is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists

    Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids

    Get PDF
    The incorporation of noncanonical amino acids into recombinant proteins in Escherichia coli can be facilitated by the introduction of new aminoacyl-tRNA synthetase activity into the expression host. We describe here a screening procedure for the identification of new aminoacyl-tRNA synthetase activity based on the cell surface display of noncanonical amino acids. Screening of a saturation mutagenesis library of the E. coli methionyl-tRNA synthetase (MetRS) led to the discovery of three MetRS mutants capable of incorporating the long-chain amino acid azidonorleucine into recombinant proteins with modest efficiency. The Leu-13 → Gly (L13G) mutation is found in each of the three MetRS mutants, and the MetRS variant containing this single mutation is highly efficient in producing recombinant proteins that contain azidonorleucine

    Copper-free click chemistry in living animals

    No full text
    Chemical reactions that enable selective biomolecule labeling in living organisms offer a means to probe biological processes in vivo. Very few reactions possess the requisite bioorthogonality, and, among these, only the Staudinger ligation between azides and triarylphosphines has been employed for direct covalent modification of biomolecules with probes in the mouse, an important model organism for studies of human disease. Here we explore an alternative bioorthogonal reaction, the 1,3-dipolar cycloaddition of azides and cyclooctynes, also known as “Cu-free click chemistry,” for labeling biomolecules in live mice. Mice were administered peracetylated N-azidoacetylmannosamine (Ac4ManNAz) to metabolically label cell-surface sialic acids with azides. After subsequent injection with cyclooctyne reagents, glycoconjugate labeling was observed on isolated splenocytes and in a variety of tissues including the intestines, heart, and liver, with no apparent toxicity. The cyclooctynes tested displayed various labeling efficiencies that likely reflect the combined influence of intrinsic reactivity and bioavailability. These studies establish Cu-free click chemistry as a bioorthogonal reaction that can be executed in the physiologically relevant context of a mouse

    Synthesis of the GPR40 Partial Agonist MK-8666 through a Kinetically Controlled Dynamic Enzymatic Ketone Reduction

    No full text
    A scalable and efficient synthesis of the GPR40 agonist MK-8666 was developed from a simple pyridine building block. The key step to set the stereochemistry at two centers relied on an enzymatic dynamic kinetic reduction of an unactivated ketone. Directed evolution was leveraged to generate an optimized ketoreductase that provided the desired <i>trans</i> alcohol in >30:1 dr and >99% ee. Further, it was demonstrated that all four diastereomers of this hydroxy-ester could be prepared in high yield and selectivity. Subsequently, a challenging intramolecular displacement was carried out to form the cyclopropane ring system with perfect control of endo/exo selectivity. The endgame coupling strategy relied on a Pd-catalyzed C–O coupling to join the headpiece chloropyridine with the benzylic alcohol tailpiece
    corecore