697 research outputs found

    A Selective Emotional Decision-Making Bias Elicited by Facial Expressions

    Get PDF
    Emotional and social information can sway otherwise rational decisions. For example, when participants decide between two faces that are probabilistically rewarded, they make biased choices that favor smiling relative to angry faces. This bias may arise because facial expressions evoke positive and negative emotional responses, which in turn may motivate social approach and avoidance. We tested a wide range of pictures that evoke emotions or convey social information, including animals, words, foods, a variety of scenes, and faces differing in trustworthiness or attractiveness, but we found only facial expressions biased decisions. Our results extend brain imaging and pharmacological findings, which suggest that a brain mechanism supporting social interaction may be involved. Facial expressions appear to exert special influence over this social interaction mechanism, one capable of biasing otherwise rational choices. These results illustrate that only specific types of emotional experiences can best sway our choices

    Cybersecurity: mapping the ethical terrain

    Get PDF
    This edited collection examines the ethical trade-offs involved in cybersecurity: between security and privacy; individual rights and the good of a society; and between the types of burdens placed on particular groups in order to protect others. Foreword Governments and society are increasingly reliant on cyber systems. Yet the more reliant we are upon cyber systems, the more vulnerable we are to serious harm should these systems be attacked or used in an attack. This problem of reliance and vulnerability is driving a concern with securing cyberspace. For example, a ‘cybersecurity’ team now forms part of the US Secret Service. Its job is to respond to cyber-attacks in specific environments such as elevators in a building that hosts politically vulnerable individuals, for example, state representatives. Cybersecurity aims to protect cyberinfrastructure from cyber-attacks; the concerning aspect of the threat from cyber-attack is the potential for serious harm that damage to cyber-infrastructure presents to resources and people. These types of threats to cybersecurity might simply target information and communication systems: a distributed denial of service (DDoS) attack on a government website does not harm a website in any direct way, but prevents its normal use by stifling the ability of users to connect to the site. Alternatively, cyber-attacks might disrupt physical devices or resources, such as the Stuxnet virus, which caused the malfunction and destruction of Iranian nuclear centrifuges. Cyber-attacks might also enhance activities that are enabled through cyberspace, such as the use of online media by extremists to recruit members and promote radicalisation. Cyber-attacks are diverse: as a result, cybersecurity requires a comparable diversity of approaches. Cyber-attacks can have powerful impacts on people’s lives, and so—in liberal democratic societies at least—governments have a duty to ensure cybersecurity in order to protect the inhabitants within their own jurisdiction and, arguably, the people of other nations. But, as recent events following the revelations of Edward Snowden have demonstrated, there is a risk that the governmental pursuit of cybersecurity might overstep the mark and subvert fundamental privacy rights. Popular comment on these episodes advocates transparency of government processes, yet given that cybersecurity risks represent major challenges to national security, it is unlikely that simple transparency will suffice. Managing the risks of cybersecurity involves trade-offs: between security and privacy; individual rights and the good of a society; and types of burdens placed on particular groups in order to protect others. These trade-offs are often ethical trade-offs, involving questions of how we act, what values we should aim to promote, and what means of anticipating and responding to the risks are reasonably—and publicly—justifiable. This Occasional Paper (prepared for the National Security College) provides a brief conceptual analysis of cybersecurity, demonstrates the relevance of ethics to cybersecurity and outlines various ways in which to approach ethical decision-making when responding to cyber-attacks

    Exact Synchronization for Finite-State Sources

    Full text link
    We analyze how an observer synchronizes to the internal state of a finite-state information source, using the epsilon-machine causal representation. Here, we treat the case of exact synchronization, when it is possible for the observer to synchronize completely after a finite number of observations. The more difficult case of strictly asymptotic synchronization is treated in a sequel. In both cases, we find that an observer, on average, will synchronize to the source state exponentially fast and that, as a result, the average accuracy in an observer's predictions of the source output approaches its optimal level exponentially fast as well. Additionally, we show here how to analytically calculate the synchronization rate for exact epsilon-machines and provide an efficient polynomial-time algorithm to test epsilon-machines for exactness.Comment: 9 pages, 6 figures; now includes analytical calculation of the synchronization rate; updates and corrections adde

    Inhibition of uric acid or IL- 1β ameliorates respiratory syncytial virus immunopathology and development of asthma

    Full text link
    BackgroundRespiratory syncytial virus (RSV) affects most infants early in life and is associated with increased asthma risk. The specific mechanism remains unknown.ObjectiveTo investigate the role of uric acid (UA) and IL- 1β in RSV immunopathology and asthma predisposition.MethodsTracheal aspirates from human infants with and without RSV were collected and analyzed for pro- IL- 1β mRNA and protein to establish a correlation in human disease. Neonatal mouse models of RSV were employed, wherein mice infected at 6- 7 days of life were analyzed at 8 days postinfection, 5 weeks postinfection, or after a chronic cockroach allergen asthma model. A xanthine oxidase inhibitor or IL- 1 receptor antagonist was administered during RSV infection.ResultsHuman tracheal aspirates from RSV- infected infants showed elevated pro- IL- 1β mRNA and protein. Inhibition of UA or IL- 1β during neonatal murine RSV infection decreased mucus production, reduced cellular infiltrates to the lung (especially ILC2s), and decreased type 2 immune responses. Inhibition of either UA or IL- 1β during RSV infection led to chronic reductions in pulmonary immune cell composition and reduced type 2 immune responses and reduced similar responses after challenge with cockroach antigen.ConclusionsInhibiting UA and IL- 1β during RSV infection ameliorates RSV immunopathology, reduces the consequences of allergen- induced asthma, and presents new therapeutic targets to reduce early- life viral- induced asthma development.Neonatal RSV infection is associated with increases in pulmonary uric acid and IL- 1β and lung immunopathology. XOI or IL- 1RA administration during neonatal RSV infection leads to reduced RSV immunopathology. XOI or IL- 1RA administration during neonatal RSV infection leads to reduced type 2 immune responses during a subsequent model of asthma.Abbreviations: IL- 1RA, IL- 1 receptor antagonist; RSV: Respiratory syncytial virus; XOI, xanthine oxidase inhibitor.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162774/3/all14310.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162774/2/all14310_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162774/1/all14310-sup-0005-TableS1.pd

    Usability Testing of an Electronic Patient-Reported Outcome System for Survivors of Critical Illness

    Get PDF
    BACKGROUND: Web-based electronic patient-reported outcomes (ePRO) measures are increasingly used to facilitate patient-centered health assessments. However, it is unknown if ePRO completion is feasible for recently ill intensive care unit (ICU) survivors and their families. OBJECTIVE: To develop and evaluate the usability of a novel ePRO system (ePRO to Support People and Enhance Recovery [ePROSPER]) among ICU survivors and their families within an ongoing clinical trial. METHODS: Paper-based PROs were iteratively adapted to electronic forms (ePROs). Then, the usability of ePROSPER was assessed among 60 patients, their family members, and PRO and programming experts via questionnaires (eg, Systems Usability Scale), "think aloud" open-ended feedback, task completion times, and error rates. RESULTS: Input from patients and their families was used to incorporate user-experience modifications into ePROSPER. This feedback also led to inclusion of automated reminders for questionnaire completion and real-time alerts for staff triggered by high symptom levels. Median usability scores increased over testing cycles from 40 to 73 to 95, nearing the maximum score and showing excellent usability. All users completed ePROSPER within 20 minutes; 87% preferred it to a written version. ePROSPER was then implemented in a clinical trial without data errors. CONCLUSIONS: Automated ePRO systems can be successfully integrated in a post-ICU clinical trial setting. The value of integrating such systems in direct clinical care should be assessed in future studies

    Reanalysis of Rate Data for the Reaction CH<sub>3</sub> + CH<sub>3</sub> → C<sub>2</sub>H<sub>6</sub> Using Revised Cross Sections and a Linearized Second-Order Master Equation

    Get PDF
    Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988 , 92 , 2455 - 2462 ). These corrections necessitated the development of a detailed model of the B̃(2)A1' (3s)-X̃(2)A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k∞(T); it was used to fit the experimental rate coefficients using the Levenberg-Marquardt algorithm to minimize χ(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k∞(T) = 5.76 × 10(-11)(T/298 K)(-0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression

    The first large catalogue of spectroscopic redshifts in Webb's First Deep Field, SMACS J0723.3-7327

    Full text link
    We present a spectroscopic redshift catalogue of the SMACS J0723.3-7327 field ("Webb's First Deep Field") obtained from JWST/NIRISS grism spectroscopy and supplemented with JWST/NIRSpec and VLT/MUSE redshifts. The catalogue contains a total of 190 sources with secure spectroscopic redshifts, including 156 NIRISS grism redshifts, 123 of which are for sources whose redshifts were previously unknown. These new grism redshifts are secured with two or more spectroscopic features (64 sources), or with a single spectral feature whose identity is secured from the object's nine-band photometric redshift (59 sources). These are complemented with 17 NIRSpec and 48 MUSE redshifts, including six new NIRSpec redshifts identified in this work. In addition to the zcl=0.39z_{\rm cl}=0.39 cluster galaxy redshifts (for which we provide \sim40 new NIRISS absorption-line redshifts), we also find three prominent galaxy overdensities at higher redshifts - at z=1.1z=1.1, z=1.4z=1.4, and z=2.0z=2.0 - that were until now not seen in the JWST/NIRSpec and VLT/MUSE data. The paper describes the characteristics of our spectroscopic redshift sample and the methodology we have employed to obtain it. Our redshift catalogue is made available to the community at https://niriss.github.io/smacs0723.Comment: 19 pages, 13 figures, 3 appendices. Accepted for publication in MNRA

    Atmospheric Escape Processes and Planetary Atmospheric Evolution

    Full text link
    The habitability of the surface of any planet is determined by a complex evolution of its interior, surface, and atmosphere. The electromagnetic and particle radiation of stars drive thermal, chemical and physical alteration of planetary atmospheres, including escape. Many known extrasolar planets experience vastly different stellar environments than those in our Solar system: it is crucial to understand the broad range of processes that lead to atmospheric escape and evolution under a wide range of conditions if we are to assess the habitability of worlds around other stars. One problem encountered between the planetary and the astrophysics communities is a lack of common language for describing escape processes. Each community has customary approximations that may be questioned by the other, such as the hypothesis of H-dominated thermosphere for astrophysicists, or the Sun-like nature of the stars for planetary scientists. Since exoplanets are becoming one of the main targets for the detection of life, a common set of definitions and hypotheses are required. We review the different escape mechanisms proposed for the evolution of planetary and exoplanetary atmospheres. We propose a common definition for the different escape mechanisms, and we show the important parameters to take into account when evaluating the escape at a planet in time. We show that the paradigm of the magnetic field as an atmospheric shield should be changed and that recent work on the history of Xenon in Earth's atmosphere gives an elegant explanation to its enrichment in heavier isotopes: the so-called Xenon paradox

    Development and usability testing of a Web-based decision aid for families of patients receiving prolonged mechanical ventilation

    Get PDF
    BackgroundWeb-based decision aids are increasingly important in medical research and clinical care. However, few have been studied in an intensive care unit setting. The objectives of this study were to develop a Web-based decision aid for family members of patients receiving prolonged mechanical ventilation and to evaluate its usability and acceptability.MethodsUsing an iterative process involving 48 critical illness survivors, family surrogate decision makers, and intensivists, we developed a Web-based decision aid addressing goals of care preferences for surrogate decision makers of patients with prolonged mechanical ventilation that could be either administered by study staff or completed independently by family members (Development Phase). After piloting the decision aid among 13 surrogate decision makers and seven intensivists, we assessed the decision aid’s usability in the Evaluation Phase among a cohort of 30 surrogate decision makers using the Systems Usability Scale (SUS). Acceptability was assessed using measures of satisfaction and preference for electronic Collaborative Decision Support (eCODES) versus the original printed decision aid.ResultsThe final decision aid, termed ‘electronic Collaborative Decision Support’, provides a framework for shared decision making, elicits relevant values and preferences, incorporates clinical data to personalize prognostic estimates generated from the ProVent prediction model, generates a printable document summarizing the user’s interaction with the decision aid, and can digitally archive each user session. Usability was excellent (mean SUS, 80 ± 10) overall, but lower among those 56 years and older (73 ± 7) versus those who were younger (84 ± 9); p = 0.03. A total of 93% of users reported a preference for electronic versus printed versions.ConclusionsThe Web-based decision aid for ICU surrogate decision makers can facilitate highly individualized information sharing with excellent usability and acceptability. Decision aids that employ an electronic format such as eCODES represent a strategy that could enhance patient-clinician collaboration and decision making quality in intensive care.Electronic supplementary materialThe online version of this article (doi:10.1186/s13613-015-0045-0) contains supplementary material, which is available to authorized users
    corecore