224 research outputs found

    Evidence for a fragile X messenger ribonucleoprotein 1 (FMR1) mRNA gain-of-function toxicity mechanism contributing to the pathogenesis of fragile X-associated premature ovarian insufficiency

    Get PDF
    Fragile X-associated premature ovarian insufficiency (FXPOI) is among a family of disorders caused by expansion of a CGG trinucleotide repeat sequence located in the 5’ untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene on the X chromosome. Women with FXPOI have a depleted ovarian follicle population, resulting in amenorrhea, hypoestrogenism, and loss of fertility before the age of 40. FXPOI is caused by expansions of the CGG sequence to lengths between 55 and 200 repeats, known as a FMRI premutation, however the mechanism by which the premutation drives disease pathogenesis remains unclear. Two main hypotheses exist, which describe an mRNA toxic gain-of-function mechanism or a protein-based mechanism, where repeat-associated non-AUG (RAN) translation results in the production of an abnormal protein, called FMRpolyG. Here, we have developed an in vitro granulosa cell model of the FMR1 premutation by ectopically expressing CGG-repeat RNA and FMRpolyG protein. We show that expanded CGG-repeat RNA accumulated in intranuclear RNA structures, and these aggregates were able to cause significant granulosa cell death independent of FMRpolyG expression. Using an innovative RNA pulldown, mass spectrometry-based approach we have identified proteins that are specifically sequestered by CGG RNA aggregates in granulosa cells in vitro, and thus may be deregulated as consequence of this interaction. Furthermore, we have demonstrated reduced expression of three proteins identified via our RNA pulldown (FUS, PA2G4 and TRA2β) in ovarian follicles in a FMR1 premutation mouse model. Collectively, these data provide evidence for the contribution of an mRNA gain-of-function mechanism to FXPOI disease biology

    Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development

    Get PDF
    Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001) and at age 4 years (r = 0.16, P = 0.02). In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02). This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04). We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fa

    Coupled measurements of δ18O and δD of hydration water and salinity of fluid inclusions in gypsum from the Messinian Yesares Member, Sorbas Basin (SE Spain)

    Get PDF
    Financial support was provided by Clare College Geological Research Fund to N.P. Evans. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement n. 339694 (Water Isotopes of Hydrated Minerals) to D.A. Hodell.We studied one cycle (Cycle 6) of gypsum-marl deposition from the Messinian Yesares Member in Sorbas Basin, Spain. The objective was to reconstruct the changing environment of deposition and its relation to astronomically-forced climate change. The δ18O and δD of gypsum hydration water (CaSO4 • 2H2O) and salinity of fluid inclusions were measured in the same samples to test if they record the composition of the mother fluid from which gypsum was precipitated. Water isotopes are highly correlated with fluid inclusion salinity suggesting the hydration water has not exchanged after formation. The relatively low water isotope values and fluid inclusion salinities indicate a significant influence of meteoric water, whereas δ34S, δ18OSO4 and 87Sr/86Sr support a dominant marine origin for the gypsum deposits. The discrepancy between water and elemental isotope signatures can be reconciled if meteoric water dissolved previously deposited marine sulfates supplying calcium and sulfate ions to the basin which maintained gypsum saturation. This recycling process accounts for the marine δ34S, δ18OSO4 and 87Sr/86Sr signatures, whereas the low δ18O and δD values of gypsum hydration water and fluid inclusion salinities reflect the influence of freshwater. The cyclic deposition of gypsum and marl in the Yesares Member has previously been interpreted to reflect changing climate related to Earth's precession cycle. We demonstrate that the δ18O, δD and salinity of the parent brine increased from low values at the base of the cycle to a maximum in the massive gypsum palisade, and decreased again to lower values in the supercones at the top of the cycle. This pattern, together with changes in mineralogy (calcite-dolomite-gypsum), is consistent with a precession-driven change in climate with wettest conditions (summer insolation maxima) associated with the base of the calcium carbonate marls and driest conditions (summer insolation minima) during formation of the gypsum palisade.Publisher PDFPeer reviewe

    Behavioral and Other Phenotypes in a Cytoplasmic Dynein Light Intermediate Chain 1 Mutant Mouse

    Get PDF
    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system

    PKA Phosphorylation of NDE1 Is DISC1/PDE4 Dependent and Modulates Its Interaction with LIS1 and NDEL1

    Get PDF
    Nuclear distribution factor E-homolog 1 (NDE1), Lissencephaly 1 (LIS1), and NDE-like 1 (NDEL1) together participate in essential neurodevelopmental processes, including neuronal precursor proliferation and differentiation, neuronal migration, and neurite out-growth. NDE1/LIS1/NDEL1 interacts with Disrupted in Schizophrenia 1 (DISC1) and the cAMP-hydrolyzing enzyme phosphodiesterase 4 (PDE4). DISC1, PDE4, NDE1, and NDEL1 have each been implicated as genetic risk factors for major mental illness. Here, we demonstrate that DISC1 and PDE4 modulate NDE1 phosphorylation by cAMP-dependent protein kinase A (PKA) and identify a novel PKA substrate site on NDE1 at threonine-131 (T131). Homology modeling predicts that phosphorylation at T131 modulates NDE1–LIS1 and NDE1–NDEL1 interactions, which we confirm experimentally. DISC1–PDE4 interaction thus modulates organization of the NDE1/NDEL1/LIS1 complex. T131-phosphorylated NDE1 is present at the postsynaptic density, in proximal axons, within the nucleus, and at the centrosome where it becomes substantially enriched during mitosis. Mutation of the NDE1 T131 site to mimic PKA phosphorylation inhibits neurite outgrowth. Thus PKA-dependent phosphorylation of the NDE1/LIS1/NDEL1 complex is DISC1–PDE4 modulated and likely to regulate its neural functions

    Resuscitation with pre-hospital blood products in adults with trauma-related haemorrhagic shock:the RePHILL RCT

    Get PDF
    Background: The treatment of traumatic haemorrhagic shock has been transformed through better haemorrhage control, use of tranexamic acid and use of blood products. The improved survival seen from these strategies has stimulated an interest in pre-hospital transfusion.Objectives: To determine if the clinical effectiveness of resuscitation with red blood cells and lyophilised plasma was superior to 0.9% saline for improving tissue perfusion and reducing mortality in adults with haemorrhagic shock following major trauma.Design: A multi-centre, allocation concealed, open-label, parallel group, randomised controlled trial (with internal pilot).Setting: The trial was conducted in four civilian pre-hospital critical care services who operated within the National Health Service (NHS) England Major Trauma Networks.Participants: Adults (aged ≥16 years) who had sustained traumatic injuries, were attended by a pre-hospital emergency medical team and were hypotensive (systolic blood pressure &lt;90 mmHg or absence of radial pulse) as a consequence of traumatic haemorrhage were eligible for inclusion. The exclusion criteria were known or apparently &lt;16 years, blood administered on scene prior to the arrival of the RePHILL team, traumatic cardiac arrest where (1) the arrest occurred prior to arrival of the team and/or (2) the primary cause is not hypovolaemia, refusal of blood product administration, known Jehovah’s Witness, pregnancy, isolated head injury without evidence of external haemorrhage, prisoners in the custody of HM Prison and Probation Service.Interventions: Participants were randomised to receive up to either two units each of red blood cells and lyophilised plasma or up to 1 L 0.9% saline. Treatment was administered through the intravenous or intraosseous route.Main outcome measures: The primary outcome was a composite of episode mortality and/or impaired lactate clearance. The secondary outcomes included the individual components of the primary outcome.Results: From 6 December 2016 to 2 January 2021, pre-hospital medical teams randomised 432 participants to red blood cell/lyophilised plasma (n = 209) or 0.9% saline (n = 223) out of a target sample size of 490. Most participants were white (62%), males (82%), median age 38 (interquartile range 26 to 58), involved in a road traffic collision (62%) with severe injuries (median injury severity score 36, interquartile range 25 to 50). Prior to randomisation participants had received on average 430 ml crystalloid fluids and tranexamic acid (90%). The primary outcome occurred in 128/199 (64.3%) of participants randomised to red blood cell/lyophilised plasma and 136/210 (64.8%) randomised to 0.9% saline [adjusted risk difference –0.025% (95% confidence interval –9.0% to 9.0%), p = 0.996]. The event rates for the individual components of the primary outcome, episode mortality and lactate clearance were not statistically different between groups [adjusted average differences −3% (−12% to 7%); p = 0.57 and −5% (−14% to 5%), p = 0.33, respectively].Limitations: Recruitment stopped prematurely due to disruption caused by the COVID-19 pandemic.Future work: Identify the characteristics of patients who may benefit from pre-hospital blood products and whether alternative transfusion regimens are superior to standard care.Conclusions: The trial did not demonstrate that pre-hospital red blood cell/lyophilised plasma resuscitation was superior to 0.9% saline for trauma-related haemorrhagic shock.Trial registration: This trial is registered as ISRCTN62326938.Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Efficacy and Mechanism Evaluation Programme (NIHR award ref: 14/152/14) and is published in full in Efficacy and Mechanism Evaluation; Vol. 11, No. 2. See the NIHR Funding and Awards website for further award information.<br/

    Long‐term Phase 1/2 intraspinal stem cell transplantation outcomes in ALS

    Full text link
    ObjectiveIntraspinal human spinal cord‐derived neural stem cell (HSSC) transplantation is a potential therapy for amyotrophic lateral sclerosis (ALS); however, previous trials lack controls. This post hoc analysis compared ambulatory limb‐onset ALS participants in Phase 1 and 2 (Ph1/2) open‐label intraspinal HSSC transplantation studies up to 3 years after transplant to matched participants in Pooled Resource Open‐Access ALS Clinical Trials (PRO‐ACT) and ceftriaxone datasets to provide required analyses to inform future clinical trial designs.MethodsSurvival, ALSFRS‐R, and a composite statistic (ALS/SURV) combining survival and ALS Functional Rating Scale revised (ALSFRS‐R) functional status were assessed for matched participant subsets: PRO‐ACT n = 1108, Ph1/2 n = 21 and ceftriaxone n = 177, Ph1/2 n = 20.ResultsSurvival did not differ significantly between cohorts: Ph1/2 median survival 4.7 years, 95% CI (1.2, ∞) versus PRO‐ACT 2.3 years (1.9, 2.5), P = 1.0; Ph1/2 3.0 years (1.2, 5.6) versus ceftriaxone 2.3 years (1.8, 2.8), P = 0.88. Mean ALSFRS‐R at 24 months significantly differed between Ph1/2 and both comparison cohorts (Ph1/2 30.1 ± 8.6 vs. PRO‐ACT 24.0 ± 10.2, P = 0.048; Ph1/2 30.7 ± 8.8 vs. ceftriaxone 19.2 ± 9.5, P = 0.0023). Using ALS/SURV, median PRO‐ACT and ceftriaxone participants died by 24 months, whereas median Ph1/2 participant ALSFRS‐Rs were 23 (P = 0.0038) and 19 (P = 0.14) in PRO‐ACT and ceftriaxone comparisons at 24 months, respectively, supporting improved functional outcomes in the Ph1/2 study.InterpretationComparison of Ph1/2 studies to historical datasets revealed significantly improved survival and function using ALS/SURV versus PRO‐ACT controls. While results are encouraging, comparison against historical populations demonstrate limitations in noncontrolled studies. These findings support continued evaluation of HSSC transplantation in ALS, support the benefit of control populations, and enable necessary power calculations to design a randomized, sham surgery‐controlled efficacy study.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144287/1/acn3567_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144287/2/acn3567.pd

    A retrospective analysis of recurrent pediatric ependymoma reveals extremely poor survival and ineffectiveness of current treatments across central nervous system locations and molecular subgroups

    Get PDF
    BackgroundRelapse occurs in 50% of pediatric ependymoma cases and has poor prognosis. Few studies have investigated the clinical progress of relapsed disease, and treatment lacks a standardized approach.Methods and materialsWe analyzed 302 pediatric ependymoma cases. Tumor, demographic, and treatment variables were investigated for association with relapse risk, time to recurrence, and survival after relapse. DNA methylation profiling was performed for 135/302 cases, and predominant subgroups were EPN_PFA (n = 95) and EPN_RELA (n = 24). Chromosome 1q status was ascertained for 185/302 cases by fluorescent in‐situ hybridization (FISH), multiplex ligation‐dependent probe amplification (MLPA), and DNA methylation profiles. ResultsSixty‐two percent of cases relapsed, with a median of two recurrences with no difference between posterior fossa and supratentorial locations (66% vs 55% relapse rate). One hundred seventeen (38%) cases relapsed within two years and five (2%) beyond 10 years. The late relapses were clinically heterogeneous. Tumor grade and treatment affected risk and time to relapse variably across subgroups. After relapse, surgery and irradiation delayed disease progression with a minimal impact on survival across the entire cohort. In the EPN_PFA and EPN_RELA groups, 1q gain was independently associated with relapse risk (subhazard ratio [SHR] 4.307, P = 0.027 and SHR 1.982, P = 0.010, respectively) while EPN_PFA had increased relapse risk compared with EPN_RELA (SHR = 0.394, P = 0.018). ConclusionsRecurrent pediatric ependymoma is an aggressive disease with poor outcomes, for which current treatments are inadequate. We report that chromosome 1q gain increases relapse risk in common molecular subgroups in children but a deeper understanding of the underlying biology at relapse and novel therapeutic approaches are urgently needed
    corecore