136 research outputs found

    A proposed role for all-trans retinal in regulation of rhodopsin regeneration in human rods

    Get PDF
    AbstractIn order to account for the multi-phasic dynamics of photopigment regeneration in human rods, we developed a new model of the retinoid cycle. We first examined the relative roles of the classical and channeling mechanisms of metarhodopsin decay in establishing these dynamics. We showed that neither of these mechanisms alone, nor a linear combination of the two, can adequately account for the dynamics of rhodopsin regeneration at all bleach levels. Our new model adds novel inhibitory interactions in the cycle of regeneration of rhodopsin that are consistent with the 3D structure of rhodopsin. Our analyses show that the dynamics of human rod photopigment regeneration can be accounted for by end-product regulation of the channeling mechanism where all-trans retinal (tral) inhibits the binding of 11-cis retinal to the opsin.tral complex

    Tuning properties of radial phantom motion aftereffects

    Get PDF
    AbstractMotion aftereffects are normally tested in regions of the visual field that have been directly exposed to motion (local or concrete MAEs). We compared concrete MAEs with remote or phantom MAEs, in which motion is perceived in regions not previously adapted to motion. Our aim was to study the spatial dependencies and spatiotemporal tuning of phantom MAEs generated by radially expanding stimuli. For concrete and phantom MAEs, peripheral stimuli generated stronger aftereffects than central stimuli. Concrete MAEs display temporal frequency tuning, while phantom MAEs do not show categorical temporal frequency or velocity tuning. We found that subjects may use different response strategies to determine motion direction when presented with different stimulus sizes. In some subjects, as adapting stimulus size increased, phantom MAE strength increased while the concrete MAE strength decreased; in other subjects, the opposite effects were observed. We hypothesise that these opposing findings reflect interplay between the adaptation of global motion sensors and local motion sensors with inhibitory interconnections

    Multiple Steps of Phosphorylation of Activated Rhodopsin Can Account for the Reproducibility of Vertebrate Rod Single-photon Responses

    Get PDF
    Single-photon responses (SPRs) in vertebrate rods are considerably less variable than expected if isomerized rhodopsin (R*) inactivated in a single, memoryless step, and no other variability-reducing mechanisms were available. We present a new stochastic model, the core of which is the successive ratcheting down of R* activity, and a concomitant increase in the probability of quenching of R* by arrestin (Arr), with each phosphorylation of R* (Gibson, S.K., J.H. Parkes, and P.A. Liebman. 2000. Biochemistry. 39:5738–5749.). We evaluated the model by means of Monte-Carlo simulations of dim-flash responses, and compared the response statistics derived from them with those obtained from empirical dim-flash data (Whitlock, G.G., and T.D. Lamb. 1999. Neuron. 23:337–351.). The model accounts for four quantitative measures of SPR reproducibility. It also reproduces qualitative features of rod responses obtained with altered nucleotide levels, and thus contradicts the conclusion that such responses imply that phosphorylation cannot dominate R* inactivation (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836–1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733–747.). Moreover, the model is able to reproduce the salient qualitative features of SPRs obtained from mouse rods that had been genetically modified with specific pathways of R* inactivation or Ca(2+) feedback disabled. We present a theoretical analysis showing that the variability of the area under the SPR estimates the variability of integrated R* activity, and can provide a valid gauge of the number of R* inactivation steps. We show that there is a heretofore unappreciated tradeoff between variability of SPR amplitude and SPR duration that depends critically on the kinetics of inactivation of R* relative to the net kinetics of the downstream reactions in the cascade. Because of this dependence, neither the variability of SPR amplitude nor duration provides a reliable estimate of the underlying variability of integrated R* activity, and cannot be used to estimate the minimum number of R* inactivation steps. We conclude that multiple phosphorylation-dependent decrements in R* activity (with Arr-quench) can confer the observed reproducibility of rod SPRs; there is no compelling need to invoke a long series of non-phosphorylation dependent state changes in R* (as in Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836–1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733–747.). Our analyses, plus data and modeling of others (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836–1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733–747.), also argue strongly against either feedback (including Ca(2+)-feedback) or depletion of any molecular species downstream to R* as the dominant cause of SPR reproducibility

    Host circadian rhythms are disrupted during malaria infection in parasite genotype-specific manners

    Get PDF
    Infection can dramatically alter behavioural and physiological traits as hosts become sick and subsequently return to health. Such “sickness behaviours” include disrupted circadian rhythms in both locomotor activity and body temperature. Host sickness behaviours vary in pathogen species-specific manners but the influence of pathogen intraspecific variation is rarely studied. We examine how infection with the murine malaria parasite, Plasmodium chabaudi, shapes sickness in terms of parasite genotype-specific effects on host circadian rhythms. We reveal that circadian rhythms in host locomotor activity patterns and body temperature become differentially disrupted and in parasite genotype-specific manners. Locomotor activity and body temperature in combination provide more sensitive measures of health than commonly used virulence metrics for malaria (e.g. anaemia). Moreover, patterns of host disruption cannot be explained simply by variation in replication rate across parasite genotypes or the severity of anaemia each parasite genotype causes. It is well known that disruption to circadian rhythms is associated with non-infectious diseases, including cancer, type 2 diabetes, and obesity. Our results reveal that disruption of host circadian rhythms is a genetically variable virulence trait of pathogens with implications for host health and disease tolerance

    Acute Encephalopathy Associated with Influenza A Infection in Adults

    Get PDF
    We report acute encephalopathy associated with influenza A infection in 3 adults. We detected high cerebrospinal fluid (CSF) and plasma concentrations of CXCL8/IL-8 and CCL2/MCP-1 (CSF/plasma ratios >3), and interleukin-6, CXCL10/IP-10, but no evidence of viral neuroinvasion. Patients recovered without sequelae. Hyperactivated cytokine response may play a role in pathogenesis
    corecore