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Abstract

In order to account for the multi-phasic dynamics of photopigment regeneration in human rods, we developed a new model of the
retinoid cycle. We first examined the relative roles of the classical and channeling mechanisms of metarhodopsin decay in establishing
these dynamics. We showed that neither of these mechanisms alone, nor a linear combination of the two, can adequately account for the
dynamics of rhodopsin regeneration at all bleach levels. Our new model adds novel inhibitory interactions in the cycle of regeneration of
rhodopsin that are consistent with the 3D structure of rhodopsin. Our analyses show that the dynamics of human rod photopigment
regeneration can be accounted for by end-product regulation of the channeling mechanism where all-trans retinal (tral) inhibits the bind-
ing of 11-cis retinal to the opsin.tral complex.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Light perception in vertebrates’ photoreceptors is medi-
ated by G-protein-coupled receptors called opsins. Rho-
dopsin is the light-sensing molecule of rod
photoreceptors. It is composed of the opsin protein and a
vitamin A-1 derived chromophore, 11-cis retinal (cral).
The chromophore is attached to the active site of rhodop-
sin via a Schiff base bond with Lys296. In the dark, a salt
bridge between the protonated Schiff base and Glu113 stabi-
lizes the ground state conformation of rhodopsin. When a
photon interacts with cral it causes the chromophore to
isomerize to its all-trans configuration (tral). This isomeri-
zation induces a number of intra-molecular steric interac-
tions that lead to disruption of the salt bridge and
conversion of rhodopsin into its active form, metarhodop-
sin II (MII) (Bifone, de Groot, & Buda, 1997; Meng &
Bourne, 2001; Ritter, Zimmermann, Heck, Hofmann, &
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Bartl, 2004; Yamada, Yamato, Kakitani, & Yamamoto,
2004). Subsequently MII interacts with transducin, a het-
erotrimeric G-protein that in turn initiates the reactions
of the phototransduction cascade (for reviews see Burns
& Arshavsky, 2005; Burns & Lamb, 2003; Burns & Taylor,
2001).

Rhodopsin is rapidly deactivated through the action of
rhodopsin kinase which phosphorylates a number of ser-
ines and threonines on the C-terminal of rhodopsin
(Arshavsky, 2002; Kennedy, Lee, Niemi, Craven, & Gar-
win, 2001; Ohguro, Van Hooser, & Milam, 1995; Zhang,
Sports, Osawa, & Weiss, 1997). Final quench of MII activ-
ity occurs when its transduction interaction site is capped
by the water soluble protein, arrestin. Following inactiva-
tion, in order to regain photosensitivity, rhodopsin requires
the isomerization of tral back to cral and its re-insertion
and attachment to rhodopsin’s active site. In vertebrate
photoreceptors this process occurs through a collection of
chemical reactions known as the retinoid cycle or visual
cycle (reviewed in Lamb & Pugh, 2004; McBee, Palczewski,
Baehr, & Pepperberg, 2001; Rando, 2001; Saari, 2000).
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Reactions of the retinoid cycle take place within the rod
outer segment (ROS) and retinal pigment epithelium
(RPE) and are depicted in Fig. 1.

The first step of the retinoid cycle involves decay of MII

which begins with hydrolysis of the Schiff base bond between
tral and Lys296. Concurrent with this process a storage form
of rhodopsin, metarhodopsin III (MIII) is generated (Heck,
Schädel, Maretzki, Bartl, & Ritter, 2003). Classical studies
(Matthews, Hubbard, Brown, & Wald, 1963; Wald, 1968)
suggested that following the hydrolysis of the Schiff base,
tral separates from the opsin apo-protein. According to this
mechanism, subsequent to its release into the ROS cyto-
plasm, most of tral is reduced by NADPH-dependent
trans-retinol dehydrogenase (tRDH) to all-trans retinol
(trol) (see Fig. 1a). The remaining tral diffuses in the lipid
phase where it forms a condensation product with phospha-
tidylethanolamine. Eventually the condensation product is
flipped across the membrane to the ROS cytoplasm by an
ATP-binding cassette transporter (ABCR) (Weng, Mata,
Azarian, Tzekov, & Birch, 1999) where it is hydrolyzed. tral

is then reduced by tRDH in the cytoplasm.
Fig. 1. Retinoid cycle reactions with (a) classical (CLM) and (b) channelin
proposed by Heck et al., 2003, where cral can interact with Ops Æ tral to regene
abbreviations see the text.
However, recent studies by Schädel and co-workers
(Heck, Schädel, Maretzki, & Hofmann, 2003; Schädel
et al., 2003) suggest that a ‘‘retinal channeling’’ mechanism
could be the primary pathway of metarhodopsin decay and
that the ‘‘classical pathway’’ plays a negligible role in
the dynamics of rhodopsin regeneration. According to
the channeling hypothesis, following the hydrolysis of the
Schiff base, tral diffuses out of the active site but is prevent-
ed from leaving the protein. Instead, tral is transported to
another retinoid binding site labeled, the ‘‘exit site’’. The
exit site is accessible only to the tral that is released from
the rhodopsin active site (i.e. free tral in the lipid phase can-
not bind to this site) (Heck et al., 2003). It is at this site that
reduction of tral by tRDH occurs. The resultant trol
remains attached to this site until a third retinoid binding
site labeled the ‘‘entrance site’’ is occupied by a cral mole-
cule (see Figs. 1b and 2a). In a process reminiscent of the
classical mechanism, it has been proposed that in condi-
tions where large bleaches of rhodopsin exceed the capacity
of tRDH to reduce tral, tral dissociates from the exit site
and diffuses into the lipid phase (Heck et al., 2003) where
g (CHM) mechanism of rhodopsin regeneration (including the reaction
rate a molecule of rhodopsin). For details of the process and definition of



Fig. 2. Proposed retinoid binding sites on rhodopsin. (a) The red colored amino acids of the ‘‘entrance site’’ represent the proposed binding site for tral,
while the yellow colored amino acids indicate the cral binding site (Schädel et al., 2003). The displayed image is that of bovine rhodopsin (pdb 1HZX
(Teller et al., 2001)). (b) A closeup look at the location of the retinoid binding sites (Schädel et al., 2003) on bovine metarhodopsin (PDB 1LN6, (Choi
et al., 2002)). The yellow colored amino acids indicate the binding site of cral at the entrance site, while red amino acids represent the tral binding site at the
entrance site. The blue colored amino acids denote the retinoid exit site. The location of these three sites are in close enough proximity to each other that it
is possible that binding of two retinoids could sterically hinder the binding of a third. Images produced using Deepview/Swiss-pdbViewer.
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it eventually is transported back to the cytoplasm via the
action of ABCR.

Regardless of the mechanism of metarhodopsin decay,
the resultant trol is transported across the inter-photore-
ceptor matrix and into the RPE where, following a series
of reactions, it is re-isomerized back to cral. Upon trol’s
entrance into the RPE, fatty acids are used to esterify trol

in a reaction catalyzed by lecithin:retinol acyltransferase
(Berman, Horowitz, Segal, Fisher, & Feeney-Burns, 1980;
Rando, 1991; Ruiz, Winston, Lim, Gilbert, & Rando,
1999; Saari & Bredberg, 1988; Saari & Bredberg, 1989;
Shi, Furuyoshi, Hubacek, & Rando, 1993; Shi, Hubacek,
& Rando, 1993). The resulting all-trans-retinyl ester
(tRE) is then chaperoned by the protein RPE65 to a retinyl
ester isomerohydrolase (Gollapalli, Maiti, & Rando, 2003;
Gollapalli & Rando, 2003a, 2003b; Mata, Moghrabi, Lee,
Bui, & Radu, 2004; Moiseyev, Crouch, Goletz, Oatis, &
Redmond, 2003) which catalyzes its conversion to 11-cis

retinol (crol). It should be noted that recent reports have
nominated RPE65 as the previously unidentified isomero-
hydrolase enzyme (Moiseyev, Chen, Takahashi, & Wu,
2005; Moiseyev, Takahashi, Chen, Gentleman, & Red-
mond, 2006; Redmond, Poliakov, Yu, Tsai, & Lu, 2005).
Finally, the cycle is completed when the crol is oxidized
by 11-cis retinol dehydrogenase to cral and is transported
back to the ROS.

Recently, Mahroo, Lamb and Pugh (MLP), (Lamb &
Pugh, 2004; Mahroo & Lamb, 2004) have developed a
rate-limited model of pigment regeneration in vertebrate
photoreceptors that accounts for various aspects of dark
adaptation and for the effects of some genetic mutations that
lead to defective retinoid delivery and visual dysfunction
(Lamb & Pugh, 2004; Mahroo & Lamb, 2004; Wenzel,
Oberhauser, Pugh, Lamb, & Grimm, 2005). However,
despite its predictive utility, the MLP model is unable to
account for the observation that rhodopsin regeneration
has an early fast recovery phase, and a later slow phase
(Jäger, Palczewski, & Hofmann, 1996; Kolesnikov, Shukol-
yukov, Cornwall, & Govardovskii, 2006). We believe that
the cause of this shortcoming is that in MLP, the dynamics
of metarhodopsin decay are ignored and only the process
of recombination of cral with opsin and/or the opsin-trol

complex (Ops Æ trol) is explicitly modeled.
Additionally, a possible origin of the observed rhodop-

sin regeneration behavior is the interplay between the two
known pathways of metarhodopsin regeneration, i.e. the
classical mechanism (CLM) and the channeling mechanism
(CHM). In order to examine the relative roles of CHM and
CLM on the overall dynamics of photopigment regenera-
tion in human rods, we developed a model that incorpo-
rates both pathways into an MLP-like model of cral

transport and insertion. The difference between this model
and MLP is that, where the latter ignores the time course of
metarhodopsin decay and Ops Æ tral reduction by tRDH, we
explicitly accounted for the kinetics of these steps.

The results of our simulations show: (a) neither CLM
nor CHM can account for the observed rhodopsin regener-
ation dynamics; (b) simple linear combinations of the two
pathways do not account for the fast-slow, bi-phasic nature
of rhodopsin regeneration. Based on these results we pro-
pose a possible biochemical scheme that can account for
photopigment regeneration dynamics. Our new model
assumes that all metarhodopsin decays via CHM but with
tral acting as an end-product inhibitor of the fast binding
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reaction of cral to Ops Æ tral. The proposed mechanism
involves early post-flash binding of cral to Ops Æ tral, a pro-
cess which due to tral inhibition eventually is replaced by
cral binding to Ops-trol. This scheme can accurately
account for the data, including the two phases of photopig-
ment regeneration.

2. Models and methodology

Our models builds upon the MLP model of the retinoid
cycle. The major differences from the MLP model are:

(a) We include the interconversion of MII and MIII, and
the decay of these species via the classical pathway
and/or the channeling mechanism.

(b) We specifically account for the activity of the enzyme
all-trans retinol dehydrogenase.

Models were developed using Karyote cell simulator
(Ortoleva, Berry, Brun, Fan, & Fontus, 2003; Weitzke &
Ortoleva, 2003). The reactions implemented are presented
in Table 1. Table 2, lists the parameters used. The models
Table 1
List of retinoid cycle reactions implemented

Reaction

1 MII ����! ����
kMII!MIII

kMII!MIII =QMII!MIII

MIII

Purely channeling mechanism

2 MII ���!kCHM
MII Ops � tral

3 MIII ���!kCHM
MIII Ops � tral

4 Ops � tral ����! ����
ktRDH

ktRDH =QtRDH

Ops � trol

5 Ops � trolþ cral ���!kR Rþ trol
6 Ops � tralþ cral ���!kR Rþ tral

Purely classical mechanism

7 MII ���!kCLM
MII Opsþ tral

8 MIII ���!kCLM
MIII Opsþ tral

9 Opsþ cral ���!kR R

10 tral ����! ����
ktRDH

ktRDH =QtRDH

trol

11 Opsþ tral ���!ktral tral � Opsin
12 tral� Opsinþ cral ���!kR Rþ tral

Tral regulation reactions (purely CHM)

13 MII þ tral ���!ktral MII � tral
14 MIII þ tral ���!ktral MIII � tral
15 MII � tral ����! ����

kMII!MIII

kMII!MIII=QMII!MIII

MIII � tral

16 MII � tral ���!kCHM
MII Opscdot2tral

17 MIII � tral ���!kCHM
MIII Ops � 2tral

18 Ops � tralþ tral ���!ktral Ops � 2tral

19 Ops � 2tral ����! ����
ktRDH

ktRDH =QtRDH

trol � Ops � tral

20 trol � Ops � tralþ cral ���!kR Rþ tralþ trol
simulate the interactions between two compartments, one
representing 20 rod outer segments and other, a single
RPE cell (Lamb & Pugh, 2004).

2.1. Model assumptions

1. All the reactions are considered to be finite rate reac-
tions. Thus, the conservation of mass equation for spe-
cies i in compartment a is written as:

dca
i

dt
¼
Xnc

b6¼a

F b!a
i þ na

i ð1Þ

where ca
i is the concentration of species i in compart-

ment a, nc is the total number of compartments, F b!a
i

is the flux of species i from compartment b into com-
partment a, and na

i is the net rate of reactions involving
species i.

2. We assume that conversion of rhodopsin to MII is
instantaneous and that all of our metarhodopsin decay
processes are irreversible. The parameters we use for
these processes are those reported by Lamb and Pugh
(2004) (see Table 2).
Description

Metarhodopsin interconversion

Metarhodopsin decay

Metarhodopsin decay

tRDH catalyzed reduction

Bimolecular rhodopsin regeneration
Bimolecular rhodopsin regeneration (Heck’s proposal)

Metarhodopsin decay

Metarhodopsin decay

Bimolecular rhodopsin regeneration

tRDH catalyzed reduction

Production of pseudo photoproduct tral- opsin

Bimolecular rhodopsin regeneration

tral regulation of metarhodopsin decay
tral regulation of metarhodopsin decay
Metarhodopsin interconversion

Metarhodopsin decay

Metarhodopsin decay

tral regulation of channeling mechanism

tRDH catalyzed reduction

Bimolecular rhodopsin regeneration



Table 2
List of parameters*

Parameter Value (Equation) or reaction Source

Pure CLM Pure CHM CHM and CLM End-product regulation

VROS 1.812 pL (4,6,7) A
A 3.6 · 10�3 mm2 (4,6,7) A
n 1 · 108 B
[R] 20n/VROS = 2.6 mM
Km 0.52 mM 0.52 mM 0.52 mM 0.39 mM C
kMII!MIII 6.67 · 10�5 s�1 1,15 C
QMII!MIII 170 1,15 C
ktRDH 2.4 s�1 4,10,19 Da

QtRDH 0.1 4,10,19 E
[cral]RPE 0.169 mM Fa

kMII 6.16 · 10�3 s�1 C
kMIII 1.05 · 10�2 s�1 C
xCLM 1 0 0 < xCLM < 1 0
kCLM

MII xCLM · kMII 7
kCLM

MIII xCLM · kMIII 8
kCHM

MII (1 � xCLM) · kMII 2,16
kCHM

MIII (1 � xCLM) · kMIII 3,17
kR 87 M�1 s�1 486 M�1 s�1 207 M�1 s�1 292 M�1 s�1 5,6,9,12,20 Cb

ktral kR/2.5 18 Gc

hRPE!ROS
cral (VROS/A) · Km · kR (4,6,7,8) C b

hRPE!ROS
trol hRPE!ROS

cral

A, Hoang et al. (2002); B, Unger et al. (1997); C, Lamb and Pugh (2004); D, Belyaeva et al. (2005); E, Palczewski et al. (1994); F, Maeda et al. (2005); G,
Jäger et al. (1996).

a Based on observations in prRDH�/� mice that the rate of production of trol in these animals was a quarter of that for wild type (Maeda et al., 2005),
we multiplied the turnover number reported by Belyaeva et al. by four and used this value in our simulations.

b We optimized the hRPE!ROS
cral and kR parameters to fit to the experimental data using the range of Km value from Lamb and Pugh (2004).

c ktral was determined by using the optimized kR value and the experimental observation (Jäger et al., 1996) that for opsin kR = 2.5 · ktral.
* Unless otherwise listed, the values listed under pure CLM were used for all four models.
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3. Although the activity of ATP-binding cassette trans-
porters (ABCR) is of utmost importance to the overall
health of retina (see Cideciyan, Aleman, Swider, Sch-
wartz, & Steinberg, 2004; Mata, Tzekov, Liu, Weng, &
Birch, 2001; Suarez, Biswas, & Biswas, 2002; Sun,
Smallwood, & Nathans, 2000; Weng et al., 1999), it
has been proposed that the activity of ABCR does not
significantly affect the dynamics of recovery from a sin-
gle bleaching exposure (Lamb & Pugh, 2004). Thus, we
do not account for the processes involved in the trans-
port of tral from the inside of disc membranes to their
cytoplasmic surface.

4. As in the MLP model, we assume that the concentration
of cral in the RPE is constant. This is equivalent to
assuming that there is rapid replenishment of cral in
the RPE from retinoid stores in RPE and choroid (see
Bridges, Alvarez, & Fong, 1982; Imanishi, Batten, Pis-
ton, Baehr, & Palczewski, 2004).

5. We assume that, under dark adapted conditions cral

equilibrates between the RPE and ROS, and there is
no net transport across the inter-photoreceptor matrix.

The dark concentration of cral was derived from mea-
surements by Maeda et al. (Maeda, Maeda, Imanishi,
Kuksa, & Alekseev, 2005). We subtracted their measured
value of rhodopsin concentration (468 pmol/eye) from their
measured value of total cral per mouse eye (529 pmol/eye) to
come up with a value of 60.9 pmol of free cral per mouse eye.
Dividing this amount equally between RPE cells and rod
outer segments yields an estimate of 30.45 pmol of cral in
mouse ROS. Assuming that a rhodopsin concentration of
468 pmol/eye corresponds to 2.6 mM, then 30.45 pmol of
cral in the ROS corresponds to 0.169 mM.

2.2. Model development

The flux of cral from RPE to ROS is governed by the
equation:

F RPE!ROS
cral ¼ hRPE!ROS

cral

A

V ROS
cRPE

cral � cROS
cral

� �
ð2Þ

where A is the area of membrane between RPE and twenty
rod outer segments, VROS is the volume of twenty rod outer
segments, and hRPE!ROS

cral is the parameter quantifying how
fast cral can traverse the membrane.

In the MLP model, the rate of bimolecular binding reac-
tion (f(t)) between cral and opsin is expressed as:

fðtÞ ¼ kRcROS
cral OðtÞ ¼

cRPE
cral � cROS

cral

� �

R
ð3Þ

where kR is the bimolecular rate constant for binding of
cral to opsin and/or Ops Æ trol, O(t) represents the transient
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concentration of the species that cral binds to (i.e. Opsin

and/or Ops Æ trol) and R is the ‘‘resistance’’ to import of
cral from RPE to ROS.

If, like MLP, we assume that fðtÞ ¼ F RPE!ROS
cral , then

using Eq. (3) we can write MLP’s R as:

R ¼ V ROS

AhRPE!ROS
cral

ð4Þ

MLP’s semi-saturation constant (Km) for Ops-trol and/or
opsin’s rate-limited removal can be written as:

Km ¼
1

kRR
¼ AhRPE!ROS

cral

kRV ROS
ð5Þ

Since we assume that a cell’s dimensions do not change
with time, we can write A/VROS = X, a constant, and
thus:

Km ¼ X
hRPE!ROS

cral

kR

ð6Þ

Based on Eq. (6), we could derive estimates for the values
of the bimolecular rate constant kR and hRPE!ROS

cral by fitting
the models to experimental data (e.g. reflection densitome-
try measurements) (Alpern, 1971; Rushton & Powell,
1972). The value of Km was constrained to 0.52 mM (i.e.
0.2 times the total rhodopsin concentration in ROS, Lamb
& Pugh, 2004).
Fig. 3. Rhodopsin regeneration dynamics cannot be accounted for with a mod
predictions (solid curves) are compared with reflection densitometry measurem
1971; all other data: Rushton and Powell, 1972). Results for three bleach lev
diamonds). Because our implementation of the CLM model includes explicit eq
tRDH, the predicted regeneration dynamics have a sigmoidal shape, and thus d
in rhodopsin regeneration is more pronounced for smaller bleaches.
3. Results

3.1. Classical mechanism as the sole pathway of

metarhodopsin decay does not account for the data

In order to simulate pigment regeneration via a purely
CLM pathway of metarhodopsin decay, the rate constants
for the CHM reactions were set to zero (see Table 1). Using
experimental data (Alpern, 1971; Rushton & Powell, 1972),
we optimized the kR = 87 M�1 s�1 and hRPE!ROS

cral =
2.27 · 10�7 dm s�1 values. Results of these simulations
are shown in Fig. 3.

Fig. 3 compares the predictions of the pure CLM model
with reflection densitometry measurements of rhodopsin
regeneration in the human eye (Alpern, 1971; Rushton &
Powell, 1972). The CLM, model even with optimized
parameters provides a poor fit to the experimental data.
Inclusion of the metarhodopsin decay adds a delay to the
time course of recovery (Lamb & Pugh, 2004 calculated
this delay to be approximately 0.8 min for a hundred per-
cent bleach). The predicted delay varies with bleach levels
and, in fact, increases at lower bleach levels.

The problem caused by this delay cannot be ameliorated
by adjusting the kinetic parameters so as to match the data
more closely for low bleach levels. Indeed, if we optimize
hRPE!ROS

cral and kR (while maintaining Km constant across
el in which CLM is the sole pathway of metarhodopsin decay. The mode
ents of rhodopsin regeneration in the living human eye (bowties: Alpern
els are shown: 51.5% (triangles), 67% (squares), and 100% (bowties and
uations for metarhodopsin decay, as well as for reduction of tral to trol by
o not increase as quickly as the regeneration data. The extent of this delay
l
,



Fig. 4. Rhodopsin regeneration dynamics cannot be accounted for with a model in which CHM, as delineated in Schädel et al. (2003), is the sole pathway
of metarhodopsin decay. The predicted regeneration dynamics (solid curves) have an even more pronounced sigmoidal shape than for the pure CLM
model (Fig. 3). The resulting delay following a bleach fails to reproduce the empirical regeneration dynamics, and, as for the CLM simulation, becomes
more pronounced following less intense bleaches. The coding for the model curves and data are the same as in Fig. 3.
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bleach levels) so as to fit the data for small bleaches, then
the model predictions will fit the data for high bleach levels
even more poorly than shown in Fig. 3.

3.2. Channeling mechanism as the sole pathway of

metarhodopsin decay does not accurately account for the

data

In order to test how well a pure CHM (Heck et al., 2003;
Schädel et al., 2003) model would account for the data, we
implemented the generation of Ops Æ tral from metarhodop-
sin as well as the reduction of Ops Æ tral by tRDH to form
Ops Æ trol. For these simulations, the kinetic parameters for
all the non-channeling reactions were set to zero. Thus for
these simulations, there is no free Ops or tral present and
all of the decaying metarhodopsin converts to Ops Æ tral.

The results of our simulations with a pure CHM model
are shown in Fig. 4. The values for kR and hRPE!ROS

cral that
yield the best fit for a pure CHM model are over 5 times
larger than they are for a pure CLM model
(kR = 485.5 M�1 s�1 and hRPE!ROS

cral ¼ 1:268�10�6 dm s�1).
This difference is due to the fact that, in the pure CHM
model, rhodopsin regeneration dynamics are dependent
on the rate-limited reduction of tral to trol by the enzyme
tRDH. When the measured experimental values are used
for the generation of Ops Æ trol by tRDH (Palczewski, Jäger,
Buczylko, Crouch, & Bredberg, 1994), the inclusion of this
reaction exaggerates the sigmoidal nature of the photopig-
ment regeneration dynamics as compared with the CLM
simulations (see Fig. 3). We can improve the result for
small bleaches by increasing kR and cral flux, but this leads
to a severe mismatch with the data from more intense
bleaches (recovery is far too fast, results not shown).

These simulations show that a model in which metarho-
dopsin decay proceeds entirely via the proposed CHM
(Heck et al., 2003; Schädel et al., 2003) does not provide
an accurate account of the dynamics of rhodopsin regener-
ation, particularly for the first few minutes following the
flash.

A special case of the CHM model merits consideration.
For scenarios where large bleaches of rhodopsin may
exceed the capacity of tRDH, regeneration via CHM could
proceed through the binding of cral to Ops Æ tral, and
simultaneous release of a tral from the exit site (Heck
et al., 2003). The freed tral would then diffuse into the lipid
phase where it would undergo some changes (see Discus-
sion) and eventually is transported back to the cytoplasm
through the action of ABCR. In order to evaluate the effect
of this alternate hypothesis on the dynamics of rhodopsin
regeneration we added to the CHM model the proposed
interaction between Ops Æ tral and cral (see Table 1). For
these simulations we used the same kR for binding of cral

to Ops Æ tral and Ops Æ trol.
The results of these simulations are shown in Fig. 5.

They are in closer agreement with experimental data than
when cral was restricted to bind only to Ops Æ trol. The
results, in fact, are similar to those shown in Fig. 3 (pure
CLM rhodopsin regeneration). Given the fact that the rate



Fig. 5. Simulation of a special case of CHM as the sole pathway of rhodopsin regeneration. If bleaches exceed the capacity of tRDH, it has been proposed
that regeneration could proceed via CHM through the binding of cral to Ops Æ tral, and simultaneous release of a tral from the exit site (Heck et al., 2003).
Thus, for these simulations we allowed cral to bind to Ops Æ tral as well as Ops Æ trol using kR = 87 M�1 s�1 for both, and hRPE!ROS

cral ¼ 2:27� 10�7 dm s�1.
The results are in closer agreement with experimental data than when cral was restricted to bind only to Ops Æ trol, as in Fig. 4. The less pronounced
sigmoidal dynamics are similar to the predictions from the CLM model. Symbology as in Figs. 3 and 4. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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of formation of Ops and Ops Æ tral are equal in the model,
similarity is not surprising.

The predicted amount of free tral that is produced for
these simulations is very high. Our results indicate that
over 90% of regenerated rhodopsin is produced via combi-
nation of cral with Ops Æ tral. Since one of the proposed
advantages of CHM is that it protects the ROS from being
flooded by toxic tral, this scheme, as proposed, seems to
invalidate one of the main arguments for the physiological
necessity of CHM. Based on this result we can conclude
that either: (a) cral does not interact with Ops Æ tral, or
(b) the rate of combination of cral to Ops Æ tral is slower
than that of cral with Ops Æ trol, or (c) interaction of cral

with Ops Æ tral is somehow regulated by an end-product.
Since there is no physiological basis for the first two
hypotheses, we propose that for a purely CHM process,
an end-product regulatory mechanism has to govern the
dynamics of cral binding to different opsin-retinoid
complexes.

3.3. Combined metarhodopsin decay via both CLM and

CHM does not account for the measured data

Next we simulated conditions where both classical and
channeling mechanisms control metarhodopsin decay.
Fig. 6 shows the results of two such cases; the combination
that gave us the best overall fit to experimental data (57%
CLM:43% CHM (a)), and one where the results for low
bleaches were relatively improved (80% CLM:20% CHM
(b)). The kR value for both sets of simulations were
206.6 M�1 s�1 and hRPE!ROS

cral ¼ 5:4� 10�7 dm s�1.
No combination of CHM and CLM provides an ade-

quate account of the measured early post flash dynamics
of rhodopsin regeneration. When CHM dominates, a sig-
moidal form is imposed on the model predictions, and it
fails to capture any of the experimental data (especially
those for lower bleaches). When CLM dominates (thin
gray lines) the model is better able to capture the regener-
ation dynamics for the two smaller bleaches. However, the
high bleach data cannot be satisfactorily reproduced.

3.4. A new proposed scheme to account for the data: tral
regulated decay of metarhodopsin

Our analyses indicate that neither the classical mecha-
nism (Fig. 3), nor the channeling mechanism (Figs. 4 and
5), nor linear combinations of the two (Fig. 6) can explain
the complex dynamics of rhodopsin regeneration. These
results, plus other evidence that rhodopsin regeneration
cannot be described by a single exponential function (Kol-
esnikov et al., 2006) and that it has an early fast and later
slow phase (Jäger et al., 1996), led us to examine the notion
that regulatory product inhibition might explain the multi-
phasic dynamics of rhodopsin regeneration.



Fig. 6. Predicted dynamics using linear combinations of CHM- and CLM-mediated rhodopsin regeneration are also inadequate to account for the data at
all bleach levels. The simulation using the optimal combination of CLM and CHM (57% of the metarhodopsin decay proceeded via CLM, and 43% via
CHM), shown as thick solid curves, did not provide an adequate account of the data for all three bleach levels. None of the combinations of CLM and
CHM examined were able to account for the multi-phasic regeneration dynamics for all bleach levels. The thin gray curves show the results of a second
simulation in which CLM was more dominant in metarhodopsin decay; 80% via CLM and 20% via CHM. This result illustrates our finding that, when
both mechanisms are present, greater dominance by CLM provides a better account of the fast, early fast phase of regeneration for all three bleaches. For
both simulations kCHM

R ¼ kCLM
R ¼ 206:6 M�1 s�1. Symbology is the same as in Figs. 3–5. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this paper.)

Fig. 7. Our new regulated CHM model can account for the empirical rhodopsin regeneration, including the multi-phasic dynamics, for all three bleach
levels using one set of parameters. For these simulations, we implemented a set of regulatory reactions for CHM (see Table 1) whereby binding of tral to
the Ops-tral complex would inhibit its binding to cral. The model correctly predicts that the early stages of the regeneration process (the first �180 s after a
bleach) are dominated by the fast binding of cral to Ops-tral complex. After this fast, early phase, most of the regeneration process then proceeds via
binding of cral to Ops-trol, similar to the unregulated version of the CHM model. Symbology as in Figs. 3–6.
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3.4.1. End-product (tral) inhibition of cral binding to

Ops � tral

As mentioned in Section 3.2, Heck et al. (2003) have
proposed that, following large bleaches of rhodopsin that
might exceed the capacity of tRDH to reduce Ops-tral to
Ops Æ trol, rhodopsin regeneration via CHM could proceed
through the binding of cral to Ops Æ tral. The process leads
to simultaneous release of a tral from the exit site which
then would diffuse into the lipid phase and eventually be
transported back to the cytoplasm by the action of ABCR
transporter.

Upon examining the location of the proposed retinoid
binding sites on rhodopsin (Schädel et al., 2003), we note
that the three retinoid binding sites (tral at the exit site, tral
at the entrance site, and cral at the entrance site, see
Fig. 2b), are clustered in close proximity to one another.
Some of the crucial amino acids that form the different
binding sites are closely bunched together. Given the prox-
imity of the binding sites, it is possible that binding of ret-
inoids to two of these sites could sterically hinder the
binding of retinoids to the third site. For example, if a trol

is bound to the exit site and a cral binds to the entrance
site, then the binding of tral to the entrance site could be
hindered. Based on this assumption, we propose that bind-
ing of a tral molecule to the entrance site of an Ops Æ tral

complex could hinder the binding of cral to the entrance
site of the same protein. To test whether this type of end-
product regulation would allow a purely CHM model to
accurately capture the salient features of rhodopsin regen-
eration dynamics, we implemented such a regulatory
scheme (see reactions 13–20 in Table 1). The results of these
simulations are shown in Fig. 7.

As can be seen, the results of these simulations closely
match the experimental data for all three bleach levels.
Furthermore, examination of the amount of tral produced
by the process shows that, although majority of cral inter-
acts with Ops Æ tral molecules, free tral’s concentration in
the cytoplasm of ROS does not exceed 19% of the total
amount of bleached rhodopsin.

4. Discussion

We have developed a new biochemical model of the ret-
inoid cycle in vertebrate rods. An earlier model introduced
by Mahroo, Lamb, and Pugh (MLP) (Lamb & Pugh, 2004;
Mahroo & Lamb, 2004) was able to account for many of
the quantitative details of rhodopsin regeneration across
different bleach levels and experimental approaches (reflec-
tion densitometry, ERG, psychophysics). However, we
sought to explain observed complexities in the rhodopsin
regeneration kinetics that were beyond the scope of the
MLP model, namely the multi-phasic nature of rhodopsin
regeneration that is clearly evident in the reflection densi-
tometry data (see Figs. 3–7). No model to date, including
the MLP, predicts the fast early phase and later slow phase
evident in these data and noted by others (Jäger et al.,
1996; Kolesnikov et al., 2006).
In order to address these problems, we first expanded on
the MLP model by including the kinetics of metarhodopsin
decay and reduction of tral to trol. In addition, unlike
MLP, we included features of both the classical and chan-
neling mechanisms of metarhodopsin decay.

We found that addition of these explicit kinetic details
exacerbated the difficulty in accounting fully for the data
(see Figs. 3 and 4). These processes impose an unavoidable
sigmoidal rise to pigment regeneration dynamics that is
antithetical to capturing the early fast phase of regenera-
tion and the transition into the slow phase. We showed that
the two proposed mechanisms for the decay of metarho-
dopsin and regeneration of rhodopsin, the classical and
channeling mechanisms, cannot account fully for the data,
either alone (Figs. 3–5) or in combination (Fig. 6).

Experimental observations indicate that pathways anal-
ogous to both CLM and CHM contribute to decay of met-
arhodopsin. The fluorescence spectroscopic data and the
results of the molecular modeling simulations presented
by Schädel et al., 2003 provide strong support for their pro-
posed channeling mechanism. CHM agrees with Lamb and
Pugh’s (2004) proposal that the rate limiting step of the ret-
inoid cycle is the delivery of cral from RPE to opsin/Ops Æ
trol. Additionally, the CHM can explain the similarity
between the rates of rhodopsin regeneration and release
of trans-retinoids from the rhodopsin’s active site. This is
due to the fact that according to the CHM scheme, it is
the binding of cral to the entrance site of rhodopsin that
determines the rate of trol/tral release into the ROS cyto-
plasm and not vice versa, as previously had been proposed
(Saari, Garwin, & Van Hooser, 1998).

The CHM also makes physiological sense, since it has
the fortuitous effect of protecting the system from being
flooded by free tral which could seriously hinder dark
adaptation and lead to a number of retinal diseases. These
stated advantages are serious factors that argue against a
pure CLM mechanism of metarhodopsin decay. However,
it is well known that, as with CLM, some portion of the
bleached rhodopsin quickly release their isomerized chro-
mophores into the ROS cytoplasm which eventually reach
the lumenal region of the rod discs (Lamb & Pugh, 2004;
Weng et al., 1999). Upon release, a portion of this tral,
through a spontaneous interaction with phophatidyletha-
nolamine, forms the Schiff base N-retinylidene-PE (NrPE)
(Anderson & Maude, 1970; Beharry, Zhong, & Molday,
2004).

Under normal physiological conditions, NrPE is then
removed from the inner region of the disc membrane
through the action of the ABCR transporter (Ahn & Mol-
day, 2000; Ahn, Wong, & Molday, 2000; Sun, Molday, &
Nathans, 1999; Weng et al., 1999). ABCR is a member of
a family of proteins (ATP-binding cassette transporters)
that can be found in all species. It uses the energy of
ATP hydrolysis to translocate specific chemical species
across cellular membranes. The activity of ABCR is crucial
to the overall health of the retina and ABCR defects have
been shown to lead to a number of retinopathies (Cideci-
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yan et al., 2004; Mata et al., 2001; Suarez et al., 2002; Sun
et al., 2000). The reason for this is that, in absence of
ABCR’s ‘‘flippase’’ activity, the NrPE in the rod discs
interacts with a second molecule of tral to form a phospha-
tidyl-pyridinium biretinoid species known as A2-PE (Par-
ish, Hashimoto, Nakanishi, Dillon, & Sparrow, 1998)
which subsequently forms the compound N-retinylidene-
N-retinylethanolamine (A2E). A2E is the major component
of lipofuscin and does not undergo enzymatic degradation.
Experiments have shown that alterations of ABCR activity
can lead to accumulation of lipofuscin in RPE which even-
tually leads to a slow demise of the photoreceptors (Cideci-
yan et al., 2004; Mata et al., 2001; Mata, Weng, & Travis,
2000; Weng et al., 1999).

Despite its clinical importance, it has been proposed that
the functioning of ABCR transporter is not of great conse-
quence to the overall processing of retinoids by the retinoid
cycle (Lamb & Pugh, 2004). Thus it can be reasoned that
under normal conditions, some form of CHM is the pri-
mary pathway of metarhodopsin decay.

4.1. Neither CHM nor CLM can act as the sole pathway of
metarhodopsin decay

Our theoretical analyses examined whether systems
where metarhodopsin decay is purely governed by either
CHM or CLM can adequately account for the observed
multi-phasic dynamics of rhodopsin regeneration. Figs. 3
and 4 show that neither pathway alone was able to correct-
ly predict the observed regeneration behavior.

4.1.1. Classical mechanism cannot be the only mechanism of

metarhodopsin decay

Our CLM simulations confirm the MLP finding that
including the time course of metarhodopsin decay in a
model imposes a delay, in the calculated dynamics of rho-
dopsin regeneration in a fully bleached rod (Lamb & Pugh,
2004). Lamb and Pugh argued that this delay is small
(approximately 0.8 min) and thus chose not to include met-
arhodopsin decay in their model. However, our analyses
reveal out that the delay associated with formation of opsin
increases as the intensity of the bleach decreases, and thus,
for smaller bleaches, this delay becomes significant. This
greater deviation from the MLP predicted dynamics for
smaller bleaches is due to the slower initial rates of meta-
rhodopsin decay for such bleaches.

The initial rate of opsin formation is given by:

dcOpsð0Þ
dt

¼ kCLM
MII cMIIð0Þ ¼ kCLM

MII B½R�tot ð7Þ

where cMII(0) is the concentration of metarhodopsin as-
sumed to be instantaneously formed upon bleaching of
rhodopsin; [R]tot is the pre-flash concentration of rhodop-
sin in the ROS; and B is the fraction of rhodopsin that
was bleached. From this equation we can see that, the ini-
tial rate of metarhodopsin decay following 50% bleach
would be half of the value for a fully bleached system.
In order to see if we could simulate the multi-phasic
dynamics of rhodopsin regeneration by using a purely
CLM model, we experimented with varying kR and
hRPE!ROS

cral from their optimal values (as shown in Fig. 3),
while maintaining MLP’s Km constant at 0.52 mM (simula-
tion results not shown). Our aim was to test if it is possible
to overcome the delay associated with metarhodopsin
decay by expediting the binding of cral to opsin. We were
able to improve the predictions for smaller bleaches by
increasing the above values; however this led to excessive
increases in the rates of rhodopsin regeneration following
large bleaches. Overall, our results, as well as the reported
physiological advantages of CHM, argue that CLM cannot
be the sole pathway of metarhodopsin decay.

4.1.2. Channeling mechanism cannot be the only mechanism

of metarhodopsin decay

If we assume that CHM is the sole mechanism of meta-
rhodopsin decay, and that cral can only bind to Ops Æ trol,
then the bimolecular rate constant needed to best fit the
observed dynamics of rhodopsin regeneration must be
more than 5 times larger than it is for a pure CLM mech-
anism (kCLM

R ¼ 87 M�1 s�1 while kCHM
R ¼ 485 M�1 s�1; see

Figs. 3 and 4). Even with a larger kR, the CHM model,
as delineated in Schädel et al. (2003), can never achieve
an adequate fit to the data. This is because the slow kinetics
of metarhodopsin decay and reduction of tral to trol

impose an unavoidable pronounced sigmoidal dynamic to
the overall rhodopsin regeneration plot (Fig. 4). As we
saw for a pure CLM model, parameter adjustment in order
to match the fast phase of regeneration causes the model to
miss the slow later phase of regeneration (and vice versa).

It might be argued that if cral can bind to Ops Æ tral (as
proposed by Heck et al. (2003)), it would counteract the
slowing of regeneration dynamics associated with the activ-
ity of tRDH. Indeed, we show in Fig. 5 that the regenera-
tion dynamics predicted for such a scheme are closer to
experimental measurements. If one assumes that the kR

for binding of cral to Ops Æ tral is the same as it is for
Ops Æ trol, then the process of regeneration will be dominat-
ed by binding of cral to Ops Æ tral. However, this would
negate one of the main advantages of the CHM, namely
that the opsin protein chaperons the toxic tral and regu-
lates the release of retinoids into the ROS cytoplasm. Fur-
thermore, like CLM, this mechanism cannot accurately
account for the bi-phasic nature of rhodopsin regeneration.
It can only account for the dynamics either at high or low
bleach levels but not both. Based on these results, it
appears that CHM (as proposed by Heck et al., 2003; Schä-
del et al., 2003) alone cannot account for all the salient fea-
tures of the regeneration dynamics.

4.2. Unregulated combinations of CHM and CLM cannot

accurately predict the observed behavior

We also evaluated whether a linear combination of
CLM and CHM could account for the multi-phasic
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dynamics of rhodopsin regeneration. To this end, we simu-
lated a variety of scenarios where the metarhodopsin decay
kinetics were partitioned between CLM and CHM.

Fig. 6 shows the result of the combination that gave us
the best fit to experimental data (solid curves). As with sim-
ulations of CHM and CLM alone, the results of these sim-
ulations have a sigmoidal shape and thus do not account
for the fast early phase of rhodopsin regeneration.

In our simulations, we could find no linear combination
of CHM and CLM that could accurately describe the data.
When CHM dominated, the delay associated with decay of
metarhodopsin and reduction of Ops Æ tral by tRDH could
not be overcome. For scenarios where CLM dominated
(see Fig. 6, thin gray lines), the model could closely predict
the dynamics of regeneration following small bleaches. We
attribute this improvement to the faster combination of
cral to opsin in comparison to Ops Æ trol. Unfortunately,
the faster dynamics associated with CLM dominance have
an adverse effect on the predicted dynamics of regeneration
for large bleaches.

4.3. Regulation of rhodopsin regeneration dynamics by tral
can explain the observed bi-phasic behavior

Examination of Fig. 6 shows that when CLM dominates
the dynamics of metarhodopsin decay, the model not only
better captures the data for small bleaches, but also better
captures the fast early phase of regeneration for all bleach
levels. These observations led us to consider a scenario
where, for the first few minutes following a flash, the con-
tribution of fast processes like CLM to the process of
regeneration dominates and is progressively inhibited
thereafter.

4.3.1. End-product inhibition of cral binding to the Ops Æ tral

complex

Because the CHM model has clear physiological advan-
tages (Schädel et al., 2003), we sought a plausible biochem-
ical scheme that could capture the multi-phasic nature of
regeneration using a regulated CHM mechanism. In sup-
port of such a mechanism is our demonstration (Fig. 5)
that, if cral is permitted to bind to Ops-tral (Heck et al.,
2003), the predicted regeneration dynamics will closely
resemble the behavior of CLM.

We reasoned that, due to slow activity of tRDH, early
in the regeneration process Ops Æ trol would be at low
concentration. Under such conditions, cral binds to
Ops Æ tral. We thus implemented a regulatory mechanism
whereby the early portion of the rhodopsin regeneration
dynamics is dominated by relatively fast binding of cral

to Ops Æ tral, and is later replaced by the slower binding
of cral to Ops Æ trol. In our scheme, tral is released fol-
lowing the binding of cral to Ops Æ tral. This tral then
binds to another Ops Æ tral complex, inhibiting binding
of cral to it. Thus as tral concentration builds (later in
the regeneration process), the fast binding of cral to
Ops Æ tral is inhibited.
This new model is able to reproduce the retinal densi-
tometry data, including the multi-phasic regeneration
dynamics, for all three bleach levels with one set of param-
eters (Fig. 7). It should be noted here that, to date two dif-
ferent steps of the retinoid cycle have been proposed as the
rate-limiting step of the regeneration process. Lamb and
Pugh (2004) have nominated the process of transport of
cral from RPE to ROS and its binding to opsin as the
rate-limiting step, while Palczewski (Palczewski et al.,
1994) and Saari (Saari, 2000; Saari et al., 1998) have pro-
posed that the activity of tRDH is the rate-limiting step
in retinoid cycle (in mice). Our proposal serves as a bridge
between these two hypotheses. In our regulated CHM
model, the early fast portion of the regeneration results
from fast binding of cral to Ops Æ tral. Thus, the early rho-
dopsin regeneration is rate-limited by the rate of transport
of cral from RPE to ROS (similar to Lamb and Pugh’s pro-
posal). However, the slow later phase of regeneration is
rate-limited by the action of the enzyme tRDH (consistent
with Saari and Palczewski’s suggestion).

4.3.2. Plausibility of the regulated channeling mechanism
It is known that following its release from opsin, tral has

the ability to bind to rhodopsin and that the presence of
these complexes adversely affect the recovery of the visual
sensitivity following a flash (Buczylko, Saari, Crouch, &
Palczewski, 1996; Jäger et al., 1996; Melia, Cowan, Angle-
son, & Wensel, 1997; Surya & Knox, 1998). Schädel (Schä-
del et al., 2003) proposed a location at the rhodopsin
entrance site as the site for binding of exogenous tral (see
Fig. 2b).

A close examination of the proposed locations of reti-
noid binding sites on rhodopsin shows that the binding
sites of tral at the entrance and exit sites, as well as the
binding site of cral at the entrance site, are close to one
another. In fact, some of the residues in the proposed bind-
ing sites are immediately adjacent to one another (e.g.
Cys316, Thr319 of tral binding location on the exit site,
Ile54, Met317, Val318 of tral binding area on the entrance
site, and Pro53 of cral binding locale at the entrance site).
It is reasonable to suppose that steric hindrance would mit-
igate against simultaneous binding of three retinoids in
such close proximity.

One might argue against our regulatory scheme by not-
ing that some experimental results indicate that, when tral

binds and activates opsin, it does not inhibit the binding of
cral to opsin (Däemen, 1978; Sachs, Maretzki, Meyer, &
Hofmann, 2000). However, these results are for binding
of one tral and one cral to an apo-protein opsin (i.e. the
exit site of opsin does not have a tral attached to it), and
not the concurrent binding of three retinoids.

We also note that Jäger et al. (1996) have reported that
they observed bi-phasic rhodopsin regeneration behavior
for binding of cral to apo-opsin (i.e. in absence of tral).
However, in their methods, Jäger et al. noted that to
remove tral from the solution they used an aldehyde-selec-
tive gel chromatographic method. Such a method would
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preferentially remove the free tral from the solution; how-
ever, tral bound to the exit site of the opsin (as hypothe-
sized by the channeling mechanism) would not be
removed. Thus, we argue that Jäger et al.’s bi-phasic results
are not incompatible with our model, since they likely rep-
resent combination of cral with Ops Æ tral and Ops Æ trol and
not apo-opsin.

Finally, sachs et al. (Sachs et al., 2000) have presented
in vitro data that appears to demonstrate that addition of
tral to opsin initiates a positive allosteric effect, not an
inhibitory effect, on the regeneration of rhodopsin. Howev-
er, inclusion of such an allosteric activation in a model of
rhodopsin regeneration would act so as to exaggerate a sig-
moidal aspect to the photopigment regeneration. The
Sachs et al. results thus seem to be qualitatively incompat-
ible with the in vivo densitometry data which do not man-
ifest any appreciable sigmoidal dynamic (Lamb & Pugh,
2004).

5. Conclusions

We implemented detailed models of the retinoid cycle
that expanded on the MLP model. We were able to show
that neither of the two proposed mechanisms of rhodopsin
regeneration—the channeling and classical mechanisms—
can account for the complex dynamics of regeneration
for all the bleach levels tested. Nor can the data be account-
ed for by linear combinations of the two mechanisms.

We propose that the multi-phasic dynamics of rhodop-
sin regeneration in human rods can be explained through
end-product (all-trans retinal) inhibition of 11-cis retinal
binding to the Ops Æ tral complex. Our new regulated
CHM scheme has the physiological benefit that it prevents
the cytoplasm of the ROS from being flooded by toxic tral

since it predicts that almost equal amounts of tral will be
chaperoned by the opsin protein at both the entrance site
and exit site.
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