2,182 research outputs found
Ion beam effect on Ge-Se chalcogenide glass films: Non-volatile memory array formation, structural changes and device performance
The conductive bridge non-volatile memory technology is an emerging way to
replace traditional charge based memory devices for future neural networks and
configurable logic applications. An array of the memory devices that fulfills
logic operations must be developed for implementing such architectures. A
scheme to fabricate these arrays, using ion bombardment through a mask, has
been suggested and advanced by us. Performance of the memory devices is
studied, based on the formation of vias and damage accumulation due to the
interactions of Ar+ ions with GexSe1-x (x=0.2, 0.3 and 0.4) chalcogenide
glasses as a function of the ion energy and dose dependence. Blanket films and
devices were created to study the structural changes, surface roughness, and
device performance. Raman Spectroscopy, Atomic Force Microscopy (AFM), Energy
Dispersive X-Ray Spectroscopy (EDS) and electrical measurements expound the Ar+
ions behavior on thin films of GexSe1-x system. Raman studies show that there
is a decrease in area ratio between edge-shared to corner-shared structural
units, revealing occurrence of structural reorganization within the system as a
result of ion/film interaction. AFM results demonstrate a tendency in surface
roughness improvement with increased Ge concentration, after ion bombardment.
EDS results reveal a compositional change in the vias, with a clear tendency of
greater interaction between ions and the Ge atoms, as evidenced by greater
compositional changes in the Ge rich films
Galaxy bimodality versus stellar mass and environment
We analyse a z<0.1 galaxy sample from the Sloan Digital Sky Survey focusing
on the variation of the galaxy colour bimodality with stellar mass and
projected neighbour density Sigma, and on measurements of the galaxy stellar
mass functions. The characteristic mass increases with environmental density
from about 10^10.6 Msun to 10^10.9 Msun (Kroupa IMF, H_0=70) for Sigma in the
range 0.1--10 per Mpc^2. The galaxy population naturally divides into a red and
blue sequence with the locus of the sequences in colour-mass and
colour-concentration index not varying strongly with environment. The fraction
of galaxies on the red sequence is determined in bins of 0.2 in log Sigma and
log mass (12 x 13 bins). The red fraction f_r generally increases continuously
in both Sigma and mass such that there is a unified relation: f_r =
F(Sigma,mass). Two simple functions are proposed which provide good fits to the
data. These data are compared with analogous quantities in semi-analytical
models based on the Millennium N-body simulation: the Bower et al. (2006) and
Croton et al. (2006) models that incorporate AGN feedback. Both models predict
a strong dependence of the red fraction on stellar mass and environment that is
qualitatively similar to the observations. However, a quantitative comparison
shows that the Bower et al. model is a significantly better match; this appears
to be due to the different treatment of feedback in central galaxies.Comment: 19 pages, 17 figures; accepted by MNRAS, minor change
Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches
We perform a global analysis of neutrino oscillation data, including
high-precision measurements of the neutrino mixing angle theta_13 at reactor
experiments, which have confirmed previous indications in favor of theta_13>0.
Recent data presented at the Neutrino 2012 Conference are also included. We
focus on the correlations between theta_13 and the mixing angle theta_23, as
well as between theta_13 and the neutrino CP-violation phase delta. We find
interesting indications for theta_23< pi/4 and possible hints for delta ~ pi,
with no significant difference between normal and inverted mass hierarchy.Comment: Updated version, including recent data released at the Neutrino 2012
Conference. Some references adde
High-rate, high-fidelity entanglement of qubits across an elementary quantum network
We demonstrate remote entanglement of trapped-ion qubits via a
quantum-optical fiber link with fidelity and rate approaching those of local
operations. Two Sr qubits are entangled via the polarization
degree of freedom of two photons which are coupled by high-numerical-aperture
lenses into single-mode optical fibers and interfere on a beamsplitter. A novel
geometry allows high-efficiency photon collection while maintaining unit
fidelity for ion-photon entanglement. We generate remote Bell pairs with
fidelity at an average rate (success
probability ).Comment: v2 updated to include responses to reviewers, as published in PR
GMOS Integral Field Spectroscopy of a Merging System with Enhanced Balmer Absorption
In this paper we present the three dimensional dynamics of the galaxy SDSS
J101345.39+011613.66, selected for its unusually strong Balmer absorption lines
(Wo(H-delta)=7.5A). Using the GMOS-South IFU in Nod & Shuffle mode we have
mapped the continuum and optical absorption lines of this z=0.1055 field
galaxy. This galaxy has a disturbed morphology, with a halo of diffuse material
distributed asymmetrically toward the north. Using the [OII] emission line
(Wo([OII])=4.1A) we find that the gas and hot OB stars are offset from the
older stars in the system. The gas also has a spatially extended and elongated
morphology with a velocity gradient of 100+/-20km/s across 6kpc in projection.
Using the strong H-gamma and H-delta absorption lines we find that the A- stars
are widely distributed across the system and are not centrally concentrated
arguing that the A-star population has formed in molecular clouds outside the
nucleus. By cross correlating the spectra from the datacube with an A-star
template we find evidence that the A-star population has a 40km/s shear in the
same direction as the gas. The disturbed morphology, strong colour gradients
and strong H-delta and H-gamma absorption lines in SDSS J101345.39 argue that
this is a recent tidal interaction/merger between a passive elliptical and
star-forming galaxy. Although based on a single object, these results show that
we can spatially resolve and constrain the dynamics of this short lived (yet
important) phase of galaxy formation in which the evolutionary process take
galaxies from star-forming to their quiescent end products.Comment: 7 pages, 7 figures. Accepted for publication in Ap
Star formation rate indicators in the Sloan Digital Sky Survey
The Sloan Digital Sky Survey (SDSS) first data release provides a database of
106000 unique galaxies in the main galaxy sample with measured spectra. A
sample of star-forming (SF) galaxies are identified from among the 3079 of
these having 1.4 GHz luminosities from FIRST, by using optical spectral
diagnostics. Using 1.4 GHz luminosities as a reference star formation rate
(SFR) estimator insensitive to obscuration effects, the SFRs derived from the
measured SDSS Halpha, [OII] and u-band luminosities, as well as far-infrared
luminosities from IRAS, are compared. It is established that straightforward
corrections for obscuration and aperture effects reliably bring the SDSS
emission line and photometric SFR estimates into agreement with those at 1.4
GHz, although considerable scatter (~60%) remains in the relations. It thus
appears feasible to perform detailed investigations of star formation for large
and varied samples of SF galaxies through the available spectroscopic and
photometric measurements from the SDSS. We provide herein exact prescriptions
for determining the SFR for SDSS galaxies. The expected strong correlation
between [OII] and Halpha line fluxes for SF galaxies is seen, but with a median
line flux ratio F_[OII]/F_Halpha=0.23, about a factor of two smaller than that
found in the sample of Kennicutt (1992). This correlation, used in deriving the
[OII] SFRs, is consistent with the luminosity-dependent relation found by
Jansen et al. (2001). The median obscuration for the SDSS SF systems is found
to be A_Halpha=1.2 mag, while for the radio detected sample the median
obscuration is notably higher, 1.6 mag, and with a broader distribution.Comment: Accepted for publication in ApJ, 40 pages, 26 figure
Spectroscopic Observations of Optically Selected Clusters of Galaxies from the Palomar Distant Cluster Survey
We have conducted a redshift survey of sixteen cluster candidates from the
Palomar Distant Cluster Survey (PDCS) to determine both the density of PDCS
clusters and the accuracy of the estimated redshifts presented in the PDCS
catalog (Postman et. al. 1996). We find that the matched-filter redshift
estimate presented in the PDCS has an error sigma_z = 0.06 in the redshift
range 0.1 < z < 0.35 based on eight cluster candidates with three or more
concordant galaxy redshifts.
We measure the low redshift (0.1 < z < 0.35) space density of PDCS clusters
to be 31.3^{+30.5}_{-17.1} * E-06 h^3 Mpc^-3 (68% confidence limits for a
Poisson distribution) for Richness Class 1 systems. We find a tentative space
density of 10.4^{+23.4}_{-8.4}* E-06 h^3 Mpc^-3 for Richness Class 2 clusters.
These densities compare favorably with those found for the whole of the PDCS
and support the finding that the space density of clusters in the PDCS is a
factor of ~5 above that of clusters in the Abell catalog (Abell 1958; Abell,
Corwin, and Olowin 1989). These new space density measurements were derived as
independently as possible from the original PDCS analysis and therefore,
demonstrate the robustness of the original work. Based on our survey, we
conclude that the PDCS matched-filter algorithm is successful in detecting real
clusters and in estimating their true redshifts in the redshift range we
surveyed.Comment: 23 pages with 4 figures and 3 seperate tables. To be published in the
November Issue of the Astronomical Journa
SPIDERS: Selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys
SPIDERS (SPectroscopic IDentification of eROSITA Sources) is an SDSS-IV
survey running in parallel to the eBOSS cosmology project. SPIDERS will obtain
optical spectroscopy for large numbers of X-ray-selected AGN and galaxy cluster
members detected in wide area eROSITA, XMM-Newton and ROSAT surveys. We
describe the methods used to choose spectroscopic targets for two
sub-programmes of SPIDERS: X-ray selected AGN candidates detected in the ROSAT
All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian
cross-matching algorithm, guided by priors based on mid-IR colour-magnitude
information from the WISE survey, to select the most probable optical
counterpart to each X-ray detection. We empirically demonstrate the high
fidelity of our counterpart selection method using a reference sample of bright
well-localised X-ray sources collated from XMM-Newton, Chandra and Swift-XRT
serendipitous catalogues, and also by examining blank-sky locations. We
describe the down-selection steps which resulted in the final set of
SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS
survey, and present catalogues of these targets. We also present catalogues of
~12000 ROSAT and ~1500 XMM-Newton Slew survey sources which have existing
optical spectroscopy from SDSS-DR12, including the results of our visual
inspections. On completion of the SPIDERS program, we expect to have collected
homogeneous spectroscopic redshift information over a footprint of ~7500
deg for >85 percent of the ROSAT and XMM-Newton Slew survey sources having
optical counterparts in the magnitude range 17<r<22.5, producing a large and
highly complete sample of bright X-ray-selected AGN suitable for statistical
studies of AGN evolution and clustering.Comment: MNRAS, accepte
SDSS-RASS: Next Generation of Cluster-Finding Algorithms
We outline here the next generation of cluster-finding algorithms. We show
how advances in Computer Science and Statistics have helped develop robust,
fast algorithms for finding clusters of galaxies in large multi-dimensional
astronomical databases like the Sloan Digital Sky Survey (SDSS). Specifically,
this paper presents four new advances: (1) A new semi-parametric algorithm -
nicknamed ``C4'' - for jointly finding clusters of galaxies in the SDSS and
ROSAT All-Sky Survey databases; (2) The introduction of the False Discovery
Rate into Astronomy; (3) The role of kernel shape in optimizing cluster
detection; (4) A new determination of the X-ray Cluster Luminosity Function
which has bearing on the existence of a ``deficit'' of high redshift, high
luminosity clusters. This research is part of our ``Computational
AstroStatistics'' collaboration (see Nichol et al. 2000) and the algorithms and
techniques discussed herein will form part of the ``Virtual Observatory''
analysis toolkit.Comment: To appear in Proceedings of MPA/MPE/ESO Conference "Mining the Sky",
July 31 - August 4, 2000, Garching, German
- …