6 research outputs found

    Optimal Alignment of Structures for Finite and Periodic Systems

    No full text
    Finding the optimal alignment between two structures is important for identifying the minimum root-mean-square distance (RMSD) between them and as a starting point for calculating pathways. Most current algorithms for aligning structures are stochastic, scale exponentially with the size of structure, and the performance can be unreliable. We present two complementary methods for aligning structures corresponding to isolated clusters of atoms and to condensed matter described by a periodic cubic supercell. The first method (Go-PERMDIST), a branch and bound algorithm, locates the global minimum RMSD deterministically in polynomial time. The run time increases for larger RMSDs. The second method (FASTOVERLAP) is a heuristic algorithm that aligns structures by finding the global maximum kernel correlation between them using fast Fourier transforms (FFTs) and fast SO(3) transforms (SOFTs). For periodic systems, FASTOVERLAP scales with the square of the number of identical atoms in the system, reliably finds the best alignment between structures that are not too distant, and shows significantly better performance than existing algorithms. The expected run time for Go-PERMDIST is longer than FASTOVERLAP for periodic systems. For finite clusters, the FASTOVERLAP algorithm is competitive with existing algorithms. The expected run time for Go-PERMDIST to find the global RMSD between two structures deterministically is generally longer than for existing stochastic algorithms. However, with an earlier exit condition, Go-PERMDIST exhibits similar or better performance.This work was supported by the EPSRC Cambridge NanoDTC, EP/G037221/1

    Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Citrus sudden death (CSD), a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of <it>Citrus tristeza virus </it>(CTV). CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms.</p> <p>Results</p> <p>A total of 286 RNA-dependent-RNA polymerase (RdRp) and 284 heat shock protein 70 homolog (HSP70h) gene fragments were determined for CTV variants infecting the three trees. It was discovered that, despite differences in symptomatology, the trees were all apparently coinfected with similar populations of divergent CTV variants. While mixed CTV infections are common, the genetic distance between the most divergent population members observed (24.1% for RdRp and 11.0% for HSP70h) was far greater than that in previously described mixed infections. Recombinants of five distinct RdRp lineages and three distinct HSP70h lineages were easily detectable but respectively accounted for only 5.9 and 11.9% of the RdRp and HSP70h gene fragments analysed and there was no evidence of an association between particular recombinant mosaics and CSD. Also, comparisons of CTV population structures indicated that the two most similar CTV populations were those of one of the trees with CSD and the tree without CSD.</p> <p>Conclusion</p> <p>We suggest that if CTV is the causal agent of CSD, it is most likely a subtle feature of population structures within mixed infections and not merely the presence (or absence) of a single CTV variant within these populations that triggers the disease.</p
    corecore