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Relaxation times and transport processes of many glass-forming supercooled liquids

exhibit a super-Arrhenius temperature dependence. We examine this phenomenon by

computer simulation of the Lewis-Wahnström model for ortho-terphenyl. We propose

a microscopic definition for a single-molecule cage-breaking transition and show that,

when correlation behaviour is taken into account, these rearrangements are sufficient

to reproduce the correct translational diffusion constants over an intermediate tem-

perature range in the supercooled regime. We show that super-Arrhenius behaviour

can be attributed to increasing negative correlation in particle movement at lower

temperatures, and relate this to the cage-breaking description. Finally, we sample

the potential energy landscape of the model, and show that it displays hierarchical

ordering. Substructures in the landscape, which may correspond to metabasins, have

boundaries defined by cage-breaking transitions. The cage-breaking formulation pro-

vides a direct link between the potential energy landscape and macroscopic diffusion

behaviour.
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I. INTRODUCTION

A glass former is a liquid that may be supercooled below its melting point with-

out crystallisation.1–3 At a temperature Tg the relaxation time exceeds the experimental

timescale and the system falls out of equilibrium, becoming mechanically solid but retaining

an amorphous, liquid-like, structure. This is the kinetic glass transition. Investigation of

this transition remains one of the most active areas of research in statistical physics,3–7

partly because glass-forming behaviour is displayed by a wide range of liquids when cooled

sufficiently quickly.1,2,8 The use of glasses in industrial and everyday applications is simi-

larly widespread, providing further motivation.3,9 A major objective for theoretical work

in this field is to identify the mechanism of the dynamical slowdown,3,4,7,10 which is key to

understanding the transition but which has not been convincingly attributed to a structural

change on cooling.

The phenomenon of super-Arrhenius behaviour is a particularly active area of study.11–16

Dynamic processes are usually associated with relaxation across a single energy barrier, so

they obey the Arrhenius law, and the corresponding transport coefficients (e.g. diffusion

constants and viscosity) scale with temperature according to e±B/T , where B is constant.

However for many glass formers (termed “fragile”)17,18 a stronger “super-Arrhenius” tem-

perature dependence is observed in the supercooled regime.

Previously, the super-Arrhenius behaviour of the binary Lennard-Jones fluid (BLJ) was

shown to arise from a quantifiable negative correlation in particle motion, which increases

at lower temperatures.19,20 These negative correlations were interpreted in terms of a micro-

scopic definition for cage-breaking processes21 and the connectivity of the potential energy

landscape.22 In the present contribution, the cage-breaking definition is extended to molec-

ular systems, so that a similar analysis can be applied to a coarse-grained model for ortho-

terphenyl. This rigid body system is a more representative model than BLJ for molecular

fragile glass formers.

In section II the model system and molecular dynamics simulation details are presented.

The trajectories obtained from these simulations are then analysed in terms of cage-breaking

(section III) and short-time diffusion (section IV). Finally, the trajectories are used as

starting points to examine the potential energy landscape (PEL) directly, in section V.
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II. METHODS

A. Model

Ortho-terphenyl (1,2-diphenylbenzene, OTP) is a well-known fragile glass former, which

has been extensively studied experimentally23–25 and by simulation.26–28 It is reported that

the melting temperature TM = 328K, and the glass transition temperature Tg ≈ 243K.25

Some simulations treat OTP almost completely atomistically,26 but it is common to

rigidify much of the molecule to reduce the complexity of the simulation.27–30 The most

popular coarse-grained model is that of Lewis and Wahnström,31–34 which describes OTP

as an isosceles triangle of sites with fixed bond lengths and fixed unique angle 75◦. Each

site interacts pairwise additively with all sites in other molecules according to the Lennard-

Jones potential, which is commonly used to model non-directional dispersion forces such as

those that dominate intermolecular interactions for OTP. The bond lengths are set to σ, the

Lennard-Jones distance unit.

The model used here retains the Lewis-Wahnström geometry, but adds a Stoddard-Ford

quadratic cutoff35 to the potential, so that both the energy and its distance derivative go

smoothly to zero at the cutoff. This property is required for landscape analysis because

gradient discontinuities cause unstable behaviour in geometry optimisation.8

The complete potential for each site-site interaction is:
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where rc is the cutoff distance. The well depth of the modified potential, ǫ0, depends weakly

on rc. Following Mossa et al.32 we chose rc = 2.614 σ, which gives ǫ0 = −0.9570 ǫ.

The original study of the Lewis-Wahnström model employed ǫ0 = 600 kB K = 4.988 kJmol−1

and σ = 0.483 nm to fit the molar volume and diffusion constant against experiment at

400K.31 In the present work, the energy scale was chosen such that the modified well depth

ǫ0 corresponds to the same energy. Thus, the energy unit ǫ = 5.209 kJmol−1.
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T/K ρ/g cm−3 Production Time/ns

260 1.082 369.04

266 1.079 268.39

275 1.076 100.65

291 1.065 33.549

305 1.055 33.549

346 1.027 33.549

TABLE I. Input parameters for the MD trajectories as a function of temperature. The equilibration

time of 106 steps (16.7 ns) is excluded.

B. Molecular Dynamics Simulation

To provide dynamical data for the diffusion study and an initial set of configurations

from which to sample the PEL, canonical MD simulations of bulk OTP were performed at

a range of temperatures. The propagator used to solve the equations of motion employs

quaternions to describe the orientation of the rigid particles.36 The algorithm combines an

explicit symplectic integrator with the Nosé-Poincaré thermostat. The timestep was 16.7 fs.

Temperatures were studied in the range 260K to 346K.

The simulation consisted of 324 OTP molecules in a cubic box with periodic boundary

conditions. The molar volume was varied (see table I) to correspond with the original study

of Lewis and Wahnström.31 This system size was large enough to reproduce literature values

for the diffusion constants but small enough to mitigate some of the problems associated

with landscape analysis of large systems. In particular, identifying rearrangements that

correspond to single-particle processes is harder when the system is large enough to contain

multiple non-interacting sub-systems. The system size chosen here is a compromise between

minimising finite-size effects and multiple-subsystem effects.

106 MD steps were allowed for equilibration from a simple cubic starting structure. Subse-

quently, configurations of the trajectory were saved every 100 steps (1.67 ps). The simulation

length was varied with temperature (table I) to allow the colder trajectories to reach local er-

godicity, which was diagnosed using the Mountain-Thirumalai energy fluctuation metric18,37

and the non-Gaussian parameter for translational displacement.19,38

In much of the analysis which follows, we make use of inherent structures: local po-

tential energy minima whose basins of attraction are explored by the trajectory. At high

and very low temperatures the energies of these inherent structures are independent of
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FIG. 1. Inherent structure energies per particle for OTP MD trajectories at different temperatures.

temperature, but for a particular range of supercooled temperatures the energies decrease

with system temperature.39 This behaviour defines the “landscape-influenced” temperature

regime.1 Fig. 1 presents the energies of inherent structures sampled by our trajectories,

showing the general decrease associated with the landscape-influenced region, but beginning

to level off into the landscape-dominated regime at low temperatures. For comparison, we

calculated the energy of the bcc-like crystal structure of the Lewis-Wahnström model40 at

the ideal density of 1.2537 g cm−1 assuming perfect orientational ordering. We found this

energy to be −17.839 ǫ = −92.979 kJmol−1.

III. CAGE-BREAKING ANALYSIS

Simulations of fragile glass formers well below their freezing temperature reveal that, be-

tween short-time ballistic motion and long-time diffusive behaviour, there exists an interme-

diate time regime where the mean-square displacement of a particle is effectively constant.41

This observation corresponds to trapping of particles in a cage of their nearest neighbours,

restricting their mobility.

Signatures of this cage effect have been identified using three-time correlation functions

in hard sphere simulations,42,43 and fabrication of hard sphere-like colloidal suspensions has

allowed direct observation of cage dynamics by confocal microscopy.44,45 The cage effect has

been used in several different ways to probe the dynamics of supercooled liquids.

Caging is an important concept in the mode-coupling theory of supercooled dynamics
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(MCT), where it explains the plateau region in the intermediate scattering function at

low temperatures.8,46 As the temperature is decreased, the cages become more persistent

and motion between them becomes less frequent. MCT predicts a divergence of relaxation

time at a critical temperature Tc where all particles become caged on an infinitely long

time scale and translational diffusion halts.8,46 In fact, values of Tc fitted from theoretical

predictions significantly overestimate the observed glass transition temperature Tg. For

OTP, Tc ≈ 290K47 and Tg = 243K24 have been reported experimentally. This discrepancy

arises because conventional MCT excludes some particle exchanges, sometimes referred to

as “hopping processes”.8

Simulations of model glasses indicate a separation of the dynamics in the deeply su-

percooled regime into non-diffusive “cage rattling motions” and diffusive “cage-breaking”

rearrangements,48,49 which involve changes to the nearest-neighbour environment of the cen-

tral particle. Middleton and Wales showed that these two types of motion have systemati-

cally different potential energy barriers.50

Rabani et al. developed a “cage correlation function” based on changes in the nearest

neighbours for a particular atom, to estimate the typical residence time within a given

configuration of cages.51,52 This function was used to reproduce non-exponential relaxation

behaviour for fragile glass formers.53,54

There have also been a number of attempts to extend the cage concept by identifying

single-particle rearrangements that involve transitions between cages. One approach is to

partition the trajectory of each particle into diffusive and vibrational components,55 while

other methods involve defining cage escape events when a particle executes a jump that

is large relative to the magnitude of its fluctuations on short timescales.56,57 For example,

the Debye-Waller factor has been used to approximate the magnitude of fluctuation ex-

pected for a caged particle.49 An important observation from these studies is that many

cage-changing motions are rapidly reversed, and the proportion of reversals increases with

decreasing temperature.56

de Souza and Wales proposed a microscopic definition of a local cage-breaking process

for the binary Lennard-Jones fluid.21 In a cage-breaking transition, one or more atoms

move between nearest-neighbour cages. They found that at low temperatures, the diffusion

constant obtained from an MD trajectory can be approximated using only atomic displace-

ments resulting from productive (non-reversed) cage-breaking transitions, indicating that
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these transitions are the most important transport processes involved in long-time diffu-

sion. At lower temperatures, rearrangements that cross the high energy barriers associated

with cage-breaking transitions become less common. Additionally, at lower temperatures

the caging particles rearrange more slowly following an escape of the central particle. This

effect increases the probability of an immediate reversal of the cage break. Since produc-

tive cage breaks dominate the diffusion constant, reduced frequency of cage breaks and

increased reversal probability increases the effective energy barrier to diffusion and leads to

super-Arrhenius behaviour.56

In the present contribution we extend the cage-breaking analysis to molecular systems

and demonstrate the wider relevance of the energy landscape approach by analysing OTP,

a typical molecular glass former.

To analyse diffusion using the cage-breaking picture, the MD trajectories described in

section IIB are first transformed to “inherent trajectories”.58 Every configuration in the

trajectory is quenched to a local minimum on the potential energy landscape by performing

local energy minimisation with the LBFGS algorithm.59–61 The quenching process converts

the molecular dynamics trajectory into a discrete series of jumps between local minima of

the PEL, removing vibrational motion and helping us to define the nearest-neighbour cage

for each molecule.

This separation of dynamics into vibrational and landscape components is less appropriate

at high temperatures, where the system has sufficient kinetic energy to sample configurations

further from the corresponding local minimum. Hence the present work is concerned mostly

with moderately supercooled temperatures, where the particles are confined to potential

energy basins on much longer timescales.

Once a geometrical definition of a cage-breaking process has been established, each jump

between minima in the inherent trajectory may be classified as either cage-breaking or non-

cage-breaking for each molecule. If diffusion is limited by cage-breaking processes then

long-time diffusion constants should be reproducible from the mean squared displacement

calculated only from transitions in the inherent trajectory that correspond to cage breaks.21

The objective of the cage-breaking method is to identify which inherent structure transi-

tions correspond to genuine structural rearrangements, as opposed to minor adjustments in

particle positions. By focussing on elementary transitions between local minima, we identify

the smallest non-local motions of the system that are relevant to long-term diffusion.
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A. Defining a Cage Break

Since cages are composed of the nearest neighbours for each molecule, the definition

of a cage-breaking process must involve changes in these nearest neighbours. Correctly

identifying the neighbours is therefore an important step.

For BLJ, the nearest-neighbours of an atom were defined as all atoms that lie closer than

a parameter rNN . A suitable value of rNN was chosen near the first minimum in the radial

distribution function (RDF) for each type of interaction (AA,AB,BB).21 Since the RDF has

a small value either side of this cutoff, the nearest-neighbour shell is well defined.

We found that making an analogous definition for neighbours of an OTP molecule using a

cutoff in the centre of mass (CoM) displacement between two molecules was not as successful.

The CoM-CoM RDF, fig. 2, is less sharply peaked than the AB RDF in BLJ.21 Hence

the nearest-neighbour shell is difficult to define using this metric: any value of rNN will

misidentify some neighbours and fail to identify others. However, the nearest-neighbour

shell of an individual site in the OTP molecule is much easier to define (since the site-site

RDF, fig. 3, is more strongly peaked). Consequently, we have adopted a new definition

for molecular cage breaks. The neighbours of each site in the OTP molecule are recorded

separately, and cage breaks are identified for every site, following a rule similar to that used

with BLJ. A molecular cage break (CB) is diagnosed only when all of the constituent sites

undergo cage breaks simultaneously.

The rule used to identify CBs for individual sites (“site-CBs”) differs slightly from that

employed for BLJ. Instead of the fixed global cutoff distance rNN , we used the solid angle

nearest neighbour (SANN) method of van Meel et al.62 to identify the nearest neighbours

of a site within the OTP molecule. This is a parameter-free local cutoff method, with

the advantage that neighbour shells defined this way should be more robust against small

fluctuations in particle position, which should not be identified as neighbour changes. In the

BLJ definition, such small fluctuations were dealt with using a “displacement cutoff”: to

register as a nearest neighbour change, the distance between the central site and its newly

lost/gained neighbour had to change by at least dc. However, for OTP it was found that the

number of CBs identified depended quite strongly on the value of dc. To eliminate another

system-dependent parameter, and help make the definition of the molecular cage break more

general, we omit the displacement cutoff. This change is partly compensated by the use of
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FIG. 2. The centre of mass radial distribution function for OTP. The dashed vertical line indicates

a possible cutoff distance to define nearest neighbours, but the function is still significantly non-zero

at this point. Therefore the centre of mass distance between molecules is not sufficient to define a

nearest-neighbour shell.
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FIG. 3. The site-site radial distribution function of OTP. This is more sharply peaked than fig. 2,

indicating that nearest neighbours for individual sites within the OTP molecule are easier to define.

the SANN method, and partly by the requirement for three separate site-CBs to occur for

each molecular CB, which should limit the effect of local fluctuations. However, it seems

likely that omitting the movement cutoff will lead to a modest overidentification of cage

breaks.

Having eliminated two of the parameters that were required to define a CB in BLJ, only

one remains in the definition for OTP: the number of neighbours that must change in order

for a site cage break to take place. For BLJ this parameter was chosen to be two.21 Because
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FIG. 4. Translational diffusion constants D(T ) for OTP, showing the deviation from hypothetical

Arrhenius behaviour (demonstrated by the dashed line, which does not represent any data but is

merely intended to guide the eye).

the average number of neighbours per molecule is broadly similar for BLJ and OTP, we

again require two neighbours to be lost or two gained in order to define the site-CB.

An approximate diffusion constant can now be calculated using only the displacements

resulting from CB transitions in the inherent trajectory, and compared with the results from

the original MD trajectory.

B. Diffusion Constants

The isotropic translational diffusion of OTP was analysed by computing the diffusion

constant using the Einstein equation:

D = lim
t→∞

1

6t

〈

ri(t)
2
〉

, (2)

where ri(t) is the centre-of-mass displacement at time t of particle i from its position at time

0. 〈. . . 〉 represents an average over particles and time origins.

The diffusion constants calculated from our MD trajectories using eq. (2) are presented

in fig. 4. These data show super-Arrhenius behaviour, curving downwards below the dashed

line, which indicates the straight-line behaviour expected for Arrhenius temperature depen-

dence.

Cage-breaking diffusion constants were also calculated, considering only the particle mo-
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FIG. 5. Diffusion constants computed from inherent structure trajectories, taking into account

only the squared displacements corresponding to cage breaks. The values calculated from the

complete MD trajectory are given for comparison. Effective diffusion constants are calculated

using all cage breaks and using productive cage breaks only (i.e. excluding reversed cage breaks).

Two different methods for identifying reversed cage breaks are shown. Both give a much better

approximation to the full-trajectory values than the all-cage-breaks results. The Distance method

for identifying reversals gives a better fit than the Neighbours method, but includes a system-

dependent parameter. Using productive cage breaks to approximate the full trajectory is quite

accurate in the central temperature range.

tions that correspond to cage breaks. Eq. (2) is used again, but the real-time configurations

from the MD trajectories are replaced by frames from the inherent structure trajectories,

and the square displacement ri(t)
2 for molecule i is replaced by a sum of the square dis-

placements of every CB transition of molecule i up to time t. This modification neglects all

correlation in displacement direction between the CB steps.

The line in fig. 5 corresponding to effective diffusion constants calculated from all CB

transitions yields a substantial overestimate of the true full-trajectory values. This result

can be largely corrected by accounting for negative correlations in step direction. We ap-

proximate the required correction by discounting all molecular CBs that are subsequently

completely reversed, because these rearrangements do not contribute to long-time diffusion.

There are two possible types of reversal motion: direct reversals where a molecule returns

to its original cage via a second CB, and indirect reversals where the return step is by

a non-CB transition. For BLJ, the first type of reversal was identified when the total

squared displacement for a particular particle after two consecutive CBs was less than a

threshold distance of 10−5 σ.21 The second type was identified when the displacement in two
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consecutive CBs was identical to within 10−5 σ.

This method, based on square displacements of consecutive cage breaks and thus termed

the Distance method, fails to detect many reversals in the OTP trajectories. This is because

cages in OTP are larger and more open than in BLJ due to the anisotropy of the particles.

Larger cages mean that a reversed CB could leave a molecule in an equivalent nearest-

neighbour environment while still being a considerable distance from its original position.

Hence using an arbitrary small threshold distance, as for BLJ, fails to capture most reversal

events. We followed two approaches. Firstly, we continued to use the Distance method, but

gradually increased the threshold distance until a histogram showing the correlation angles

of consecutive productive CBs (cf. fig. 4 in de Souza and Wales, 2008)21 indicated that all

direct reversals had been identified. This gave a value for the distance cutoff of 0.3 σ. The

resulting effective diffusion constants are shown in fig. 5.

To avoid the problem of choosing a system-dependent threshold distance, we also used

a second method to identify reversed CBs based on changes to the nearest-neighbour lists.

Recall from section IIIA that we require each site in the molecule to lose or gain two nearest

neighbours in a transition if that transition is to be counted as a CB. If a site-neighbour is

lost in one CB and gained in the next, this neighbour change has been reversed directly. If

the same neighbour is lost in two consecutive CBs, the neighbour change has been reversed

indirectly. If the number of neighbours gained/lost in the first CB is less than two after

discounting reversed neighbour changes, then the first CB is considered to have been reversed

by the second (either directly or indirectly, according to the nature of the reversals). Note

that the first CB is still considered to have taken place (since it meets the required number

of site-neighbour changes) but is treated differently because it is subsequently reversed. We

refer to this approach as the the Neighbours method of identifying reversals.

“Productive” cage breaks were identified for both reversal methods. We first construct

a time-ordered list of all CBs for each molecule over the course of the trajectory. Each list

is checked for pairs of consecutive transitions that qualify as a reversal under the above

definitions. Whenever such a reversal pair is identified, both CBs are removed from the list,

so that no CB transition can belong to two reversal pairs. Indirectly-reversed CBs are also

removed. The remaining transitions are described as productive CBs.

Effective diffusion constants were calculated by summing the squared displacements of

productive cage-breaking transitions only. These effective diffusion constants are shown in
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fig. 5 for both reversal methods, along with the diffusion constants for the full (continuous)

trajectory and for all cage-breaking transitions. Both productive-only lines give a dramatic

improvement over the all-CBs line, fitting the full-trajectory values very well in the middle

temperature range which loosely corresponds to the central part of the landscape-influenced

regime. This result indicates that productive CBs (which could be defined by either method)

are sufficient to describe translational diffusion in this temperature range. In both cases,

the gradient of the productive-CB line is more negative than that of the all-CB line. This

difference indicates that reversed CBs become more common at lower temperatures, resulting

in a higher effective energy barrier to diffusion, as expected.

However, both sets of productive-CB diffusion constants badly overestimate the correct

values at high temperatures, and the Neighbour method in particular gives a significant

overestimate at low temperatures. Moreover, none of the cage-breaking lines shows sig-

nificant super-Arrhenius curvature, which shows they are not capturing all the details of

translational diffusion. This lack of super-Arrhenius curvature will be discussed further in

section IV, but here we recognise that it limits the applicability of the cage-breaking de-

scription to the temperature range over which the effective diffusion constants match those

obtained by MD simulation.

The error at higher temperatures is probably because the inherent structure description

on which the CB method is based breaks down. The original MD trajectory wanders further

from the corresponding local minima, and consequently quenching has a greater effect on

the displacement between consecutive frames. So the inherent structures no longer provide

a good description of diffusion.

The errors at low temperatures suggest that we are missing some negative correlation

effects, perhaps indicating the existence of another type of reversal motion that we have

not taken into account, for example reversals that take place via several CBs rather than a

single pair of consecutive CB events. The fact that the Distance method appears to work

better than the Neighbours method at lower temperatures may be insightful. Unlike the

Distance method, the Neighbours method depends upon the positions of multiple molecules:

both the molecule that is actually moving and all of its nearest neighbours. It is possible

that the decreased frequency of CBs at low temperatures results in the Neighbours method

missing some reversals, because in the time that elapses between the first and second CB

in a reversal pair, the nearest neighbours may move and alter the local environment. So a
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molecule could execute two cage breaks with a very small net displacement (not contributing

to long-term diffusion), but still have a different list of nearest neighbours from its starting

position and thus not be detected as a reversal by the Neighbours method. Missing reversals

in this way becomes more likely when we consider translational-rotational decoupling, which

some authors have suggested increases the rate of rotational motion relative to translational

motion at low temperatures.33,63 This decoupling would encourage changes in the cage struc-

ture on a faster timescale than that of the cage breaks themselves, which would affect the

Neighbours definition of reversals but not the Distance definition.

In spite of this slight advantage of the Distance method, we will use the Neighbours

definition for the remainder of this paper. We make this choice to present a general definition

of productive cage breaks, which can be used for simple molecular systems without needing to

choose a system-dependent parameter. Fig. 5 demonstrates that molecular rearrangements

corresponding to productive CBs are a good representation of the dominant processes in

translational diffusion in OTP in the central part of the landscape-influenced regime. It also

demonstrates the importance of negatively correlated motion, here described by reversed

cage breaks, to describe the diffusion of OTP. This negative correlation is the subject of the

next section.

IV. TIME SCALE ANALYSIS OF DIFFUSION

We will now show that super-Arrhenius behaviour in OTP can be explained by consid-

ering correlation effects in the original MD trajectory, without quenching to the inherent

structures. This method investigates the effect of the observation timescale on the appar-

ent diffusion constants, retrieving the diffusion constants by arbitrary coarse-graining of the

trajectory, rather than the directed coarse-graining of the cage-breaking method, where we

attempt to select only the important rearrangement events.

As for BLJ,18–20 the long (locally ergodic) MD trajectories were divided into a series of

short non-ergodic intervals of length τ . The reduced diffusion constant D(τ) was calculated

using eq. (2), but replacing the mean squared displacement 〈ri(t)
2〉 with

〈ri(t, τ)
2〉 =

〈

m
∑

j=1

∆ri(j)
2

〉

, (3)
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FIG. 6. Short-time apparent diffusion constants D(T, τ). Results for several values of the interval

length τ are shown, along with the data from the complete trajectory in fig. 4. τ is given in MD time

units, tint = 1.68 ps. The shortest intervals give approximately Arrhenius temperature dependence,

indicating that super-Arrhenius behaviour arises from correlation between particle displacements

in different time intervals. As τ is increased and the intervals approach the length of the entire

trajectory, the apparent diffusion constants give a better approximation to the full-trajectory values

and super-Arrhenius behaviour is restored.

where t = mτ and ∆ri(j) = ri(jτ)− ri((j − 1)τ). j indexes the time intervals.

The approximation in eq. (3) means that mean square displacements are evaluated over

each interval of length τ , with the square displacement at longer times being approximated

by adding together the square displacements computed over these short intervals. The

resulting apparent diffusion constants are presented in fig. 6. The computed D(τ) values

show roughly Arrhenius temperature dependence at small values of τ , but super-Arrhenius

curvature reappears as τ increases, becoming more pronounced for large τ as the interval

length approaches local ergodicity and D(τ) tends towards the values for the full trajectory.

If the effective diffusion constants show Arrhenius temperature dependence on short

timescales, then the super-Arrhenius behaviour observed for the long-time D(T ) must be

caused by the neglected terms in the approximation represented by eq. (3), namely the cor-

relations in particle motion between the different time intervals. These correlations may be

quantified by expressing the true displacement ri(t) of particle i at time t = mτ in terms of

the short-time displacements ∆ri(j):
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ri(t) =
m
∑

j=1

∆ri(j), so

ri(t)
2 =

(

m
∑

j=1

∆ri(j)

)

·

(

m
∑

k=1

∆ri(k)

)

=

m
∑

j=1

∆ri(j)
2 + 2

m
∑

j=1

m
∑

k=j+1

∆ri(j) ·∆ri(k)

=

m
∑

j=1

∆ri(j)
2 + 2

m
∑

j=1

m
∑

k=j+1

∆ri(j)∆ri(k) cos θjk. (4)

θjk is the angle between the displacement vectors in intervals j and k, and ∆ri(j) represents

the magnitude of ∆ri(j).

Identifying the first term of eq. (4) with eq. (3), it is clear that the short-time diffusion

constants D(τ) neglect the correlation terms in cos θjk. To confirm this result, an approxi-

mate correlation term may be reintroduced in 〈ri(t, τ)
2〉 to recover the full super-Arrhenius

behaviour.19

The average of cos θjk over all particles and time intervals is denoted by 〈cos θjk〉. Fig. 7

shows this quantity as a function of the number of time intervals that separate interval j

and interval k. For all but the smallest values of τ , the angles of particle displacements are

effectively uncorrelated (〈cos θjk〉 ≈ 0), except for consecutive time intervals (k = j + 1),

where the motion is negatively correlated: 〈cos θj,j+1〉 < 0. The magnitude of the negative

correlation increases as the temperature is decreased.

Fig. 7 shows that, to a good approximation, we may simplify the sum over k in the second

term of eq. (4) by setting all cos θjk terms to 0 unless k = j+1. We then arrive at a corrected

form of eq. (3).

〈ri(t, τ)
2〉 =

〈

m
∑

j=1

(

∆ri(j)
2 + 2∆ri(j)∆ri(j + 1) cos θj,j+1

)

〉

=

〈

m
∑

j=1

∆ri(j)
2

〉

× (1 + 2〈cos θj,j+1〉). (5)

The second line assumes that the magnitudes of the displacement vectors for adjacent time
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FIG. 7. Average correlation factor between displacements in time intervals of length τ , presented

as a function of the time elapsed between the two intervals, k − j. θjk is the angle between the

displacement vectors in interval j and interval k. All times are given in MD units, tint = 1.68 ps.

For all but the shortest interval lengths, cos θjk decays very rapidly as a function of j−k such that

all intervals except for k = j + 1 may be considered uncorrelated. For k = j + 1 the correlation

factor is negative, indicating that particle displacement vectors frequently reverse in consecutive

time intervals.

intervals are similar when averaged over large m, so that ∆ri(j+1) ≈ ∆ri(j). The diffusion

constant computed from this expression can be simplified to

D∗(T, τ) = D(T, τ)(1 + 2〈cos θj,j+1〉). (6)

The effect of including the correction term for OTP is shown in fig. 8. For all the values of

τ considered, D∗(T, τ) is significantly closer to the true long-time D(T ) than the uncorrected

D(τ). This result is true at all temperatures, so that super-Arrhenius behaviour is partially

recovered when the correction factor is included, as expected from the BLJ study.20 Using

the correction factor, D∗(T, τ) agrees well with D(T ) for all τ > 250 tint. In contrast, the

uncorrected D(T, τ) fails to reproduce D(T ) accurately in the low-temperature region, even

for τ as large as 1000 tint.

These results show that accounting for negative correlation gives a good description of

the observed super-Arrhenius behaviour. All particle displacements in OTP are negatively

correlated over short time windows, so particles have a smaller net displacement than if mo-

tion were uncorrelated. The magnitude of the negative correlations increases as temperature

decreases, leading to smaller diffusion constants and an apparent increase in the effective

barrier to diffusion.
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FIG. 8. Effective diffusion constants D∗(T, τ), incorporating a correction term computed from the

average correlation factor for consecutive time intervals. Several values of the interval length τ are

shown. Time is measured in internal MD units, tint = 1.68 ps. The full-trajectory and uncorrected

diffusion constants are shown for comparison. Including the correction term gives a dramatic

improvement in agreement with the full-trajectory values, for all values of τ . Super-Arrhenius

behaviour is retrieved at much lower values of τ than is observed for the uncorrected short-time

diffusion constants.

To link these results with the cage-breaking description of diffusion we can attribute the

negative correlation to a combination of cage rattling motion (non-cage-breaking rearrange-

ments) and reversed CBs. The absence of super-Arrhenius curvature in the cage-breaking

diffusion constants (fig. 5) therefore suggests that our method does not capture all of the

unproductive, negatively correlated motion. We will investigate this further in the future.

The timescale analysis method is a coarse-graining approach, using progressively less

information from the trajectory as τ is decreased. Cage-breaking diffusion constants can

also be considered as a coarse-graining method, since any one molecule does not contribute

to the effective diffusion constants for much of the trajectory. However, even for the coldest

trajectory available the frequency of CBs is on the order of one per dimensionless time unit.

In contrast, values of τ in excess of 1000 tint are required to give effective diffusion constants

that fit the correct values as well as those obtained from CBs. So the cage-breaking method

reproduces the diffusive behaviour in its region of validity with coarse-graining on a much

shorter timescale than is required when using the arbitrary coarse-graining of the timescale

method. This result suggests that the cage-breaking method is reasonably successful at

identifying the important rearrangements which contribute to diffusion.
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A. A more sophisticated intermolecular potential for OTP

The reduced timescale method is a very general approach that can indicate the importance

of correlation effects in a system without requiring a practical method to identify which types

of translational motion are important and productive.

Although accounting for the orientation of OTP molecules in the rigid Lewis-Wahnström

model adds significantly to the complexity of the system relative to an atomic glass former

such as BLJ, this model still neglects most of the important molecular degrees of freedom in

OTP. The most important simplification is the replacement of the benzene rings by isotropic

Lennard-Jones sites. In a more detailed model, we expect that using planar, rotatable rings

will change the details of the mechanisms by which cage breaks occur. In particular, cage-

breaking motions consisting of multiple elementary transitions may become important.

Eastwood et al. have proposed an atomistic model for OTP that includes nearly all the

degrees of freedom.26 We use a single trajectory at 290K produced for this model by the

Shaw group, and compute the average correlation angle as in eq. (4). The behaviour of this

angle as a function of time and τ is shown in fig. 9, and appears qualitatively identical to

the results for the Lewis-Wahnström model (fig. 7). We therefore expect to observe similar

behaviour in the short-time apparent diffusion constants; trajectories at other temperatures

will be analysed in future work.

These preliminary results indicate that the anticorrelation effect still holds for the Shaw

model of OTP, in which case we expect other aspects of its dynamical behaviour to reflect

those of the Lewis-Wahnström model. In particular, we expect that the important rear-

rangements for translational diffusion will still be cage breaks, in the sense that they will

involve changes of molecular nearest-neighbours and will mostly be discrete jumping events

over reasonably large distances. However, the exact atomic mechanisms by which these

cage breaks take place will be different in a more flexible model and so our definition for

identifying them will require modification if it is to work with this more realistic system.

V. LANDSCAPE ANALYSIS

Two complementary descriptions of diffusion in supercooled OTP have now been pre-

sented. In the first, productive cage breaks were identified as the rearrangements that
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FIG. 9. Average correlation factor between displacements in time intervals of length τ using the

Shaw group atomistic trajectory computed at 290K. Compare with fig. 7, which shows qualitatively

the same behaviour. This suggests that the same conclusions regarding the importance of negative

correlation will apply to this more sophisticated model as well as to Lewis-Wahnström OTP. Note

that the MD time units used here, t′0 = 200.02 ps, are different from those in fig. 7.

contribute most to long-time diffusion in the moderately supercooled regime. In the second

we showed that super-Arrhenius behaviour of the translational diffusion constants is caused

by increasing negative correlation of particle displacements at lower temperatures, which

arises partly from the types of motion excluded by the productive CB definition. In this

section, we attempt to explain both of these aspects of the temperature-dependent dynamics

by investigating the underlying potential energy landscape.

The potential energy landscape provides a powerful framework for interpreting and in-

vestigating thermodynamics and dynamics.8,10,58,64–66 The PEL, V (X), is defined as the

potential energy expressed as a function of all system coordinates, X. To simplify the anal-

ysis we consider a representative sample of the stationary points of V . In particular, we aim

to sample local minima and saddle points with a Hessian index of one, which correspond to

geometrical transition states (TSs).67 These structures largely control the equilibrium and

dynamic properties of the system.3

Following Goldstein68 it is generally accepted that the dynamics of liquids at moder-

ately supercooled temperatures depend strongly on the underlying PEL. The distribution

of potential energy minima available to the system, and especially the heights of the energy

barriers connecting them, are essential components of any microscopic description of diffu-

sion and relaxation processes in supercooled liquids.1 Direct sampling of both minima and
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transition states should provide insight into the causes of the negative correlations described

in the preceding sections.

A. Exploring the PEL

There are several approaches for sampling the landscape.69–71 To study dynamics, it is

important to explore the landscape in the same way as the model system. To this end,

the inherent structure trajectories described in section IIIB were used to provide initial

samples of local minima. Since these minima are derived from locally ergodic MD trajectories

they should be representative of the configuration space explored by supercooled liquids.70

The OPTIM program72 was used to find pathways composed of minimum-TS-minimum

triples that connect each pair of minima from the inherent trajectory. The resulting set of

pathways contains a representative sample of stationary points across a wide region of the

landscape. The PEL is temperature-independent, but this sampling method is not, so the

landscape appears different when constructed from trajectories at different temperatures.

We considered trajectories obtained at 291K and 266K, which correspond to the lower end

of the landscape-influenced dynamical regime.39 Consequently, the regions of the landscape

sampled by these trajectories will be relevant to the supercooled dynamics of the system.

The analysis of these two trajectories yielded qualitatively similar results and so, for brevity,

only the results at 266K are presented here.

OPTIM uses two algorithms to identify pathways connecting minima. An approximate

initial pathway is determined by the doubly-nudged73,74 elastic band75,76 (DNEB) algorithm.

The maxima on this pathway are candidate structures for transition states, which are refined

by hybrid eigenvector-following8,77,78 to obtain tightly converged transition states. Once a

transition state has been found, the minima it connects are determined by perturbing the

geometry slightly in opposite directions along the unique eigenvector corresponding to neg-

ative curvature, and then minimising (again using LBFGS)59,60 to trace out an approximate

minimum-energy pathway to the relevant potential minima. This procedure generates a

minimum-TS-minimum triple for each TS. If the resulting triples do not form a connected

pathway between the two initial minima, then the connection algorithm is applied again to

a pair of intermediate minima selected using a modified Dijkstra algorithm.79 This process

is repeated until a complete pathway is found between the two original endpoints.
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The Lewis-Wahnström OTP system is composed of rigid molecules, which require special

treatment in landscape sampling methods. In OPTIM, they are described by a generalised

coordinate system based on the angle-axis rotation formalism.64,80–82

B. Disconnectivity Graphs

Samples of minima and transition states can be visualised using disconnectivity graphs.83,84

These graphs illustrate the energies of the minima and their connectivity through the tran-

sition states in the database. Interconversion between two minima at a particular threshold

energy is possible if there exists a connected path between them that involves no transition

state with potential energy higher than the threshold. This criterion allows all the minima

to be grouped into mutually accessible subsets (superbasins)83 at a given energy. As the

threshold energy is decreased the subsets partition into smaller groups, until each contains

a single minimum. The vertical axis of the disconnectivity graph corresponds to potential

(or free) energy, and at each threshold energy every subset is represented by a single point,

spaced along the horizontal axis for clarity. Each subset is connected by lines to its parent

at the next higher threshold energy and to one or more daughter subsets at the next lower

threshold (down to the level of individual minima, at which the line terminates).

The structure of the disconnectivity graph can provide insight into emergent properties

of the landscape. Some systems show graphs that slope steeply down towards the global

minimum, with low energy barriers connecting local minima to the main superbasin. This

type of system will typically self-assemble to the global minimum very efficiently.8,85 Glasses,

in contrast, have highly frustrated landscapes where many minima with similar energies

are separated by high barriers compared to relevant thermal energies. The minima span

a wide range of energies, but there is no overall funnel and hence no specific structure-

seeking behaviour. As the temperature of the liquid is decreased, and crossing any particular

barrier becomes slower, the system becomes trapped on the experimental timescale behind

the higher barriers in progressively smaller regions of the landscape. The glass transition

corresponds to the system becoming localised in a small region containing relatively few

local minima.66
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10 ǫ

FIG. 10. Disconnectivity graph for OTP, produced by connecting each pair of adjacent minima in the inherent trajectory at 266K. The

potential energy landscape for OTP is highly frustrated and glassy.
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Fig. 10 shows the disconnectivity graph of OTP obtained from the inherent trajectory at

266K, well within the supercooled regime. The figure displays all the features of a glassy

landscape described above: there is no clear global minimum, the energy barriers are large

compared to kBT , and there is no overall funnel structure. Although a low-energy region

of the landscape corresponding to the crystal structure exists in principle, neither the real

liquid nor the sampling algorithm finds this region on relevant time scales, instead exploring

the many minima which correspond to amorphous configurations. There is a large range

of barrier heights between the minima, many of which are much larger than kBT in the

supercooled regime.

The minima are clustered into many local groups within which they are separated by

lower barriers (less than ǫ). The local groups can only interconvert by overcoming signifi-

cantly larger barriers, so relaxation between them is comparatively slow. This organisation

is consistent with the metabasin picture of glassy landscapes.21,66,86 A metabasin may be

defined as a set of minima that the system can traverse rapidly and reversibly. Transfer

between metabasins is effectively irreversible, thus reducing diffusion to a random walk be-

tween metabasins. Intra-metabasin transitions are much more frequent than jumps between

metabasins. It has been argued that the division of a glassy landscape into metabasins is

sufficient to produce super-Arrhenius behaviour.66 This suggestion is compatible with the de-

scription based on negatively correlated displacements (section IV), since these correlations

arise from reversed transitions within a metabasin.

Metabasin transitions have been associated with abrupt changes in the energy of the

minima visited by an inherent trajectory.86 However, the hierarchical structure seemingly

apparent within the landscape of OTP suggests that it may be possible to identify a mi-

croscopic definition that divides the landscape into a series of local funnels, which behave

like metabasins according to the energy-based definition. Since it has been recognised that

productive (i.e. non-reversed) CBs may be a good alternative definition of metabasins, in the

following section we investigate the effect of partitioning the landscape into cage-breaking

and non-cage-breaking transitions.
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C. Cage-breaking Analysis of the Landscape

The cage-breaking analysis described in section III may be applied to any pair of con-

figurations of the system, including two minima connected by a transition state. If any

molecular cage breaks occur between these two minima, the minimum-TS-minimum triple

is classified as cage-breaking. Otherwise, it is classified as non-cage-breaking.

Fig. 11 shows a disconnectivity graph for OTP from which all non-cage-breaking tran-

sition states have been removed. This transformation causes the disconnectivity graph to

fragment wherever a removed transition state provided the only connection between two

sets of minima. Each fragment is then coloured according to the energy at which it be-

comes disconnected from the rest of the graph, to show visually the connectivity of this

transformed landscape. Minima which are only connected to the rest of the landscape by

non-cage-breaking transitions are omitted entirely from the disconnectivity graph, but these

account for a small proportion of the total number of minima.

Fig. 11 shows that most of the landscape belongs to a small number of connected regions,

each appearing as a large block of a single colour in the graph. This result shows that the

removal of non-cage-breaking transition states does not significantly break the connectivity

of the landscape: cage breaks according to our definition are largely sufficient to describe

the connectivity. The fact that the graph does partially disconnect when non-cage-breaking

transitions are removed does not necessarily mean that some non-cage-breaking transitions

are essential to explore the entire landscape. The sampling method described in section VA

is not intended to identify every possible pathway between a given pair of minima. So where

two fragments become disconnected in fig. 11, there may well be other pathways connecting

these fragments by cage-breaking transition states only, which have not been located. Since

there are only a small number of significant fragments in fig. 11, it is likely that only a few

additional cage-breaking transition states would need to be located to connect the entire

landscape.

Fig. 12 is produced in the same way as fig. 11, but with all the cage-breaking transition

states removed instead of the non-cage-breaking transition states. In contrast to the CB-only

graph, fig. 12 is highly fragmented into many small unconnected regions, many containing

only a few minima at similar energies. A CB is required to cross between two such regions.

Some of the alternative pathways that have not been detected by the sampling method
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will connect pairs of minima by sequences of non-cage-breaking transitions only. Including

these would increase the connectivity of fig. 12, but because there are so many missing

connections it seems unlikely that the landscape would ever become globally connected

without the inclusion of CBs. This result reinforces the earlier conclusion that cage-breaking

rearrangements are an essential component of diffusion, since diffusion requires traversing

the landscape, which is impossible without CBs.

As shown in fig. 13, the non-CB-only graph shows small locally connected regions of

the landscape, which can be crossed without needing a CB transition. This figure suggests

hierarchical ordering of the landscape into a set of local funnels, separated by the requirement

for a cage-breaking transition to move between them.
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FIG. 11. Disconnectivity graph based on fig. 10 but removing all non-cage-breaking transition states. Some groups of minima are only

connected to the rest of the database by non-cage-breaking transition states, so in this figure they appear disconnected from the rest of the

landscape. These fragments are coloured according to the energy level at which they become disconnected, as shown by the scale bar at the

left. The separation of energy levels is 2 ǫ. The graph is almost completely connected, suggesting that non-cage-breaking transitions are not

essential to explore the entire landscape.

FIG. 12. As fig. 11 but in this case all non-cage-breaking transition states are retained and all cage-breaking transition states are removed.

The graph is highly fragmented compared to fig. 11, demonstrating that it is impossible to explore the supercooled region of the landscape

without undergoing cage-breaking transitions.
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FIG. 13. Detail from fig. 12 showing local connectivity in the non-cage-breaking landscape. The

scale bar and colouring scheme are the same as for fig. 12.

It seems likely that the local funnels in fig. 12 can be identified with groups of minima each

contained within a metabasin.58 To investigate this proposition we must establish whether

transitions between these minima are easily reversible, as expected. We estimate the re-

versibility of transitions between the minima of our database by constructing a connected

path from the inherent trajectory used in section VA by replacing each pair of minima

in the trajectory by the shortest pathway of minimum-TS-minimum triples between them.

Because the inherent trajectory frequently revisits regions of configuration space, this pro-

cess reintroduces time-dependent behaviour, including reversals in particle motion, into the

landscape database.

Every pair of minima on the connected path was analysed for CBs and reversals. Fol-

lowing the BLJ study,21 we defined a “metabasin transition” as taking place every time

a productive CB occurred (see section IIIB). Fig. 14 shows the landscape with all pro-

ductive CBs removed, and demonstrates that this definition partitions the landscape into

completely connected local funnels, which become disconnected from each other at higher

energies. Fig. 15 shows a detail from this graph corresponding to the same region of the

landscape as fig. 13, for comparison. Note the greatly increased connectivity within a funnel

once reversed CBs are taken into account.

The hierarchical structure observed by considering CBs without dynamical information
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is preserved when that information is included. Because the gaps between connected regions

in fig. 14 are accessed by non-reversed transitions, we expect diffusion at low temperatures

to approximate a random walk between these connected funnels. This is the justification

for describing the funnels as microscopically defined metabasins. However, investigations

into the correspondence of productive CBs with energy metabasin (EMB) transitions10,86

are ongoing, which will help to assess the validity of this description.
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FIG. 14. Disconnectivity graph for OTP at 266K after removing all transition states corresponding to productive CBs as identified by a

connected path analysis (see text). Disconnected fragments of the graph are coloured according to the energy level at which they become

disconnected from the rest of the graph, as shown by the scale bar at the left. The separation of energy levels is 2 ǫ. The landscape is

partitioned into a hierarchy of superstructures. Transition between superstructures requires a non-reversed (productive) CB, so movement

between superstructures should approximate a random walk, which suggests that they may correspond to metabasins.
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FIG. 15. Detail from fig. 14 showing increased local connectivity compared to fig. 13 now that

transition states corresponding to reversed cage breaks are included. The connected regions in this

detail possibly correspond to individual metabasins. The scale bar and colouring scheme are the

same as for fig. 14.

VI. CONCLUSIONS

There are three important results to be taken from this computational study of super-

cooled Lewis-Wahnström ortho-terphenyl. First, that a greatly simplified, but still accu-

rate, description of translational diffusion at moderately supercooled temperatures may be

achieved using a microscopic definition of productive cage-breaking processes. Second, the

super-Arrhenius temperature dependence of the translational diffusion constants in OTP

results from increased negative correlations in displacements at low temperatures, and these

correlations largely result from the reversed- and non- cage-breaking motion omitted from

the productive cage-breaking picture. Third, the potential energy landscape for this molec-

ular glass former may be divided into a discrete set of funnels, probably identifiable as

metabasins, and these funnels can be distinguished by the requirement that transitions be-

tween them involve cage-breaking.

These conclusions are consistent with previous results for the bulk BLJ fluid,19–22 which

demonstrates that our analysis applies beyond the case of a simple atomic liquid. A coherent,

simplified picture of diffusion in moderately supercooled fragile glass formers has now been
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presented, directly referencing features of the underlying PEL.

A geometrical definition of a nearest-neighbour cage has been presented, which captures

essential features of the PEL and of molecular dynamics. Our definition extends the scheme

proposed for BLJ21 to treat simple molecules. Moreover, two of the three system-dependent

parameters required in the original definition have been removed, providing a much more

general description of a cage-breaking transition. The new definition is in principle applicable

to any glass former, although its validity for other systems remains to be confirmed. A more

sophisticated system that could be investigated is the atomistic model of OTP proposed by

Eastwood et al. (see section IVA).

We use a timescale analysis method to show that super-Arrhenius behaviour of the trans-

lational diffusion constants arises from increasingly negative correlations in particle motion

at lower temperature. The types of motion which are excluded from our definition of pro-

ductive cage-breaks, namely cage rattling and reversed cage-breaks, contribute to these

negative correlations. The fact that the productive cage-break method is less successful at

reproducing diffusion constants at lower temperature implies that our current method does

not identify all reversals and negatively correlated rearrangements. If this aspect of the

analysis can be improved, and super-Arrhenius behaviour retrieved from the cage-breaking

method, we will be able to identify the reduced-timescale picture as containing a signature

of cage-breaking processes, allowing the diffusion behaviour to be explained without needing

to identify cage breaks microscopically.

Finally, the relationship of cage breaks and reversals to the potential energy landscape

was explored. We have shown that it is impossible to explore the PEL in a locally ergodic

fashion without undergoing cage-breaking transitions, which emphasises the importance of

this type of rearrangement for long-time diffusion. By removing all productive cage-breaking

transition states from our databse, we decompose the PEL into a set of connected funnels

between which the system should move in a random-walk-like fashion. The funnels identified

in this way probably correspond to metabasins.58 We have therefore proposed a microscopic

criterion, which reveals hierarchical order in the PEL of OTP.

Our results are consistent with a view of cooperative motion in OTP that is divided

into more and less mobile regions. The more mobile molecules at any given time are the

ones currently undergoing cage breaks, the less mobile are confined within their cages. It

would be interesting to probe the extent of these regions and the exact nature of cooperative

32



movements, perhaps by looking for time and spatial correlations in the identified cage breaks.

If a concrete connection can be found between the negative correlation and cage-breaking

descriptions of diffusion, it probably lies in identification of the timescale for cage-breaking

motion to occur, and the relationship between this timescale and the reduced timescale of

the short-time apparent diffusion constants. Arriving at a clear statement of the relationship

between these two pictures is an important challenge for future work.

Another future objective will be to compare our definition of cage-breaks with other

methods for identifying important structural changes,49,56,57 particularly those based on

metabasins,10,86,87 to understand whether they are capturing the same features of super-

cooled dynamics as cage breaks, and how these different definitions coincide with established

theories of the glass transition. In particular, it would be interesting to see how much of

the utility of the cage-breaking method comes from its non-local character, and whether

the rearrangements picked out by other approaches have similar or different effects on the

connectivity of the landscape.

The influence of the rotational degrees of freedom for OTP upon the results presented in

this paper could also be investigated further by looking for a correlation effect in rotational

diffusion analogous to that for translational diffusion described in section IV. Analysing this

effect could help to explain super-Arrhenius behaviour of rotational diffusion constants, and

possibly give new insights into the causes of low-temperature decoupling between transla-

tional and rotational diffusion constants in OTP.24,33 Barriers to rotational transitions are

smaller than those for translation, so reversals in motion are likely to be less frequent. How-

ever, it might be possible to define a geometrical motion analogous to the translational cage

break that may help to describe the rotational fine structure on the PEL. The presence of

cage-breaking transitions with low energy barriers, as seen in the disconnectivity graphs of

section VC, hints at the importance of rotation to describe the fine details of the energy

landscape.
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