3 research outputs found

    Quantifying the value of viral genomics when inferring who infected whom in the 2014–16 Ebola virus outbreak in Guinea

    Get PDF
    Transmission trees can be established through detailed contact histories, statistical or phylogenetic inference, or a combination of methods. Each approach has its limitations, and the extent to which they succeed in revealing a 'true' transmission history remains unclear. In this study, we compared the transmission trees obtained through contact tracing investigations and various inference methods to identify the contribution and value of each approach. We studied eighty-six sequenced cases reported in Guinea between March and November 2015. Contact tracing investigations classified these cases into eight independent transmission chains. We inferred the transmission history from the genetic sequences of the cases (phylogenetic approach), their onset date (epidemiological approach), and a combination of both (combined approach). The inferred transmission trees were then compared to those from the contact tracing investigations. Inference methods using individual data sources (i.e. the phylogenetic analysis and the epidemiological approach) were insufficiently informative to accurately reconstruct the transmission trees and the direction of transmission. The combined approach was able to identify a reduced pool of infectors for each case and highlight likely connections among chains classified as independent by the contact tracing investigations. Overall, the transmissions identified by the contact tracing investigations agreed with the evolutionary history of the viral genomes, even though some cases appeared to be misclassified. Therefore, collecting genetic sequences during outbreak is key to supplement the information contained in contact tracing investigations. Although none of the methods we used could identify one unique infector per case, the combined approach highlighted the added value of mixing epidemiological and genetic information to reconstruct who infected whom

    Determinants of Transmission Risk During the Late Stage of the West African Ebola Epidemic.

    Get PDF
    Understanding risk factors for Ebola transmission is key for effective prediction and design of interventions. We used data on 860 cases in 129 chains of transmission from the latter half of the 2013-2016 Ebola epidemic in Guinea. Using negative binomial regression, we determined characteristics associated with the number of secondary cases resulting from each infected individual. We found that attending an Ebola treatment unit was associated with a 38% decrease in secondary cases (incidence rate ratio (IRR) = 0.62, 95% confidence interval (CI): 0.38, 0.99) among individuals that did not survive. Unsafe burial was associated with a higher number of secondary cases (IRR = 1.82, 95% CI: 1.10, 3.02). The average number of secondary cases was higher for the first generation of a transmission chain (mean = 1.77) compared with subsequent generations (mean = 0.70). Children were least likely to transmit (IRR = 0.35, 95% CI: 0.21, 0.57) compared with adults, whereas older adults were associated with higher numbers of secondary cases. Men were less likely to transmit than women (IRR = 0.71, 95% CI: 0.55, 0.93). This detailed surveillance data set provided an invaluable insight into transmission routes and risks. Our analysis highlights the key role that age, receiving treatment, and safe burial played in the spread of EVD

    Genetic polymorphisms with erythrocyte traits in malaria endemic areas of Mali

    No full text
    International audienceAfrican populations are characterized by high degree of genetic diversity. This high genetic diversity could result from the natural selection pressure. Several studies have described an association between some genetic diversities and difference of susceptibility to infectious diseases like malaria. It seems therefore important to consider genetic diversity impact when interpreting results of clinical trials in malaria endemic areas. This study aimed to determine the genetic polymorphism with erythrocyte traits in different populations of malaria endemic area in Mali. The cross-sectional surveys were carried out in different ethnic groups living in malaria endemic areas in Mali. Six milliliters of whole blood were collected in EDTA vials from each participant after informed consent has been obtained. The ABO, RH, Kell, MNSs, Kidd and Duffy systems phenotypes were assessed by the technique of gel filtration. A total of 231 subjects were included from six villages. The blood groups phenotypes O (40.7%) and A (31.2%) were more frequent with respective allele frequencies of 0.65 and 0.21. In the RH system the haplotypes R0 (0.55), r (0.20) and R1 (0.13) were the most frequent. Seven percent (7%) of Duffy positive and 4% of Glycophorin B deficiency (S-s-) were observed among participants. All participants were Kell negative. ABO and RH systems were polymorphic in these ethnic groups in Mali. Their implication in susceptibility to malaria should be taken into account in clinical trials interpretation, and for prevention of blood transfusion risks during anemia frequently caused by malaria in children
    corecore