58 research outputs found

    Characterising the effects of in vitro mechanical stimulation on morphogenesis of developing limb explants

    Get PDF
    AbstractMechanical forces due to fetal movements play an important role in joint shape morphogenesis, and abnormalities of the joints relating to abnormal fetal movements can have long-term health implications. While mechanical stimulation during development has been shown to be important for joint shape, the relationship between the quantity of mechanical stimulation and the growth and shape change of developing cartilage has not been quantified. In this study, we culture embryonic chick limb explants in vitro in order to reveal how the magnitude of applied movement affects key aspects of the developing joint shape. We hypothesise that joint shape is affected by movement magnitude in a dose-dependent manner, and that a movement regime most representative of physiological fetal movements will promote characteristics of normal shape development. Chick hindlimbs harvested at seven days of incubation were cultured for six days, under either static conditions or one of three different dynamic movement regimes, then assessed for joint shape, cell survival and proliferation. We demonstrate that a physiological magnitude of movement in vitro promotes the most normal progression of joint morphogenesis, and that either under-stimulation or over-stimulation has detrimental effects. Providing insight into the optimal level of mechanical stimulation for cartilage growth and morphogenesis is pertinent to gaining a greater understanding of the etiology of conditions such as developmental dysplasia of the hip, and is also valuable for cartilage tissue engineering

    Kontribusi USAhatani Ternak Kambing dalam Meningkatkan Pendapatan Petani (Studi Kasus di Desa Batungsel, Kecamatan Pupuan, Kabupaten Tabanan)

    Full text link
    The aims of this study were to analyze: (1) goat farm contribution to the farmer\u27s income, (2) minimum farm scale for providing benefit, and (3) financial feasibility of the goat farm. This study was conducted in the Batungsel Village, Pupuan District, Tabanan Regency. Interview used questioner to farmers is done to collect data. Income analysis, BEP (Break Event Point), Profit Rate, and R/C ratio, was used in this study. The results of this study showed that: net income of the farmer from goat farm was Rp. 6,375,000. Profit rate 66.93% and R/C ratio of 1.67 showed that the goat farm was feasible financially. Break Event Point can be attain on Rp. 6,284,393 of the revenue or 8 goat of production. Income from goat farm give the largest contribution to total farmer income. This study indicated that the goat farm can be used as a solution to reducing poverty rate in the villages

    Stresses and strains on the human fetal skeleton during development

    Get PDF
    Mechanical forces generated by fetal kicks and movements result in stimulation of the fetal skeleton in the form of stress and strain. This stimulation is known to be critical for prenatal musculoskeletal development; indeed, abnormal or absent movements have been implicated in multiple congenital disorders. However, the mechanical stress and strain experienced by the developing human skeleton in utero have never before been characterized. Here, we quantify the biomechanics of fetal movements during the second half of gestation by modelling fetal movements captured using novel cine-magnetic resonance imaging technology. By tracking these movements, quantifying fetal kick and muscle forces, and applying them to three-dimensional geometries of the fetal skeleton, we test the hypothesis that stress and strain change over ontogeny. We find that fetal kick force increases significantly from 20 to 30 weeks' gestation, before decreasing towards term. However, stress and strain in the fetal skeleton rises significantly over the latter half of gestation. This increasing trend with gestational age is important because changes in fetal movement patterns in late pregnancy have been linked to poor fetal outcomes and musculoskeletal malformations. This research represents the first quantification of kick force and mechanical stress and strain due to fetal movements in the human skeleton in utero, thus advancing our understanding of the biomechanical environment of the uterus. Further, by revealing a potential link between fetal biomechanics and skeletal malformations, our work will stimulate future research in tissue engineering and mechanobiology

    Identification of Mechanosensitive Genes during Embryonic Bone Formation

    Get PDF
    Although it is known that mechanical forces are needed for normal bone development, the current understanding of how biophysical stimuli are interpreted by and integrated with genetic regulatory mechanisms is limited. Mechanical forces are thought to be mediated in cells by β€œmechanosensitive” genes, but it is a challenge to demonstrate that the genetic regulation of the biological system is dependant on particular mechanical forces in vivo. We propose a new means of selecting candidate mechanosensitive genes by comparing in vivo gene expression patterns with patterns of biophysical stimuli, computed using finite element analysis. In this study, finite element analyses of the avian embryonic limb were performed using anatomically realistic rudiment and muscle morphologies, and patterns of biophysical stimuli were compared with the expression patterns of four candidate mechanosensitive genes integral to bone development. The expression patterns of two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise with biophysical stimuli induced by embryonic muscle contractions, identifying them as potentially being involved in the mechanoregulation of bone formation. An altered mechanical environment was induced in the embryonic chick, where a neuromuscular blocking agent was administered in ovo to modify skeletal muscle contractions. Finite element analyses predicted dramatic changes in levels and patterns of biophysical stimuli, and a number of immobilised specimens exhibited differences in ColX and Ihh expression. The results obtained indicate that computationally derived patterns of biophysical stimuli can be used to inform a directed search for genes that may play a mechanoregulatory role in particular in vivo events or processes. Furthermore, the experimental data demonstrate that ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators in translating information from the mechanical environment to the molecular regulation of bone formation in the embryo

    Function and failure of the fetal membrane : modelling the mechanics of the chorion and amnion

    Get PDF
    The fetal membrane surrounds the fetus during pregnancy and is a thin tissue composed of two layers, the chorion and the amnion. While rupture of this membrane normally occurs at term, preterm rupture can result in increased risk of fetal mortality and morbidity, as well as danger of infection in the mother. Although structural changes have been observed in the membrane in such cases, the mechanical behaviour of the human fetal membrane in vivo remains poorly understood and is challenging to investigate experimentally. Therefore, the objective of this study was to develop simplified finite element models to investigate the mechanical behaviour and rupture of the fetal membrane, particularly its constituent layers, under various physiological conditions. It was found that modelling the chorion and amnion as a single layer predicts remarkably different behaviour compared with a more anatomically-accurate bilayer, significantly underestimating stress in the amnion and under-predicting the risk of membrane rupture. Additionally, reductions in chorion-amnion interface lubrication and chorion thickness (reported in cases of preterm rupture) both resulted in increased membrane stress. Interestingly, the inclusion of a weak zone in the fetal membrane that has been observed to develop overlying the cervix would likely cause it to fail at term, during labour. Finally, these findings support the theory that the amnion is the dominant structural component of the fetal membrane and is required to maintain its integrity. The results provide a novel insight into the mechanical effect of structural changes in the chorion and amnion, in cases of both normal and preterm rupture

    Mechanoregulation of bone formation : from embryogenesis to evolution

    No full text
    THESIS 8423In summary the author\u27s thesis is that biophysical stimuli mechanoregulate ossification events through the action of mechanosensitive genes, where mechanoregulation is an ontogenetic process which has evolved. The author proposes to conduct the investigation using a systems approach, where biological and computational methods are integrated to investigate and corroborate testable hypotheses. [page 11-12

    Compressive stress gradients direct mechanoregulation of anisotropic growth in the zebrafish jaw joint

    No full text
    Mechanical stimuli arising from fetal movements are critical factors underlying joint growth. Abnormal fetal movements negatively affect joint shape features with important implications for joint health, but the mechanisms by which mechanical forces from fetal movements influence joint growth are still unclear. In this research, we quantify zebrafish jaw joint growth in 3D in free-to-move and immobilised fish larvae between four and five days post fertilisation. We found that the main changes in size and shape in normally moving fish were in the ventrodorsal axis, while growth anisotropy was lost in the immobilised larvae. We next sought to determine the cell level activities underlying mechanoregulated growth anisotropy by tracking individual cells in the presence or absence of jaw movements, finding that the most dramatic changes in growth rates due to jaw immobility were in the ventrodorsal axis. Finally, we implemented mechanobiological simulations of joint growth with which we tested hypotheses relating specific mechanical stimuli to mechanoregulated growth anisotropy. Different types of mechanical stimulation were incorporated into the simulation to provide the mechanoregulated component of growth, in addition to the baseline (non-mechanoregulated) growth which occurs in the immobilised animals. We found that when average tissue stress over the opening and closing cycle of the joint was used as the stimulus for mechanoregulated growth, joint morphogenesis was not accurately predicted. Predictions were improved when using the stress gradients along the rudiment axes (i.e., the variation in magnitude of compression to magnitude of tension between local regions). However, the most accurate predictions were obtained when using the compressive stress gradients (i.e., the variation in compressive stress magnitude) along the rudiment axes. We conclude therefore that the dominant biophysical stimulus contributing to growth anisotropy during early joint development is the gradient of compressive stress experienced along the growth axes under cyclical loading
    • …
    corecore