89 research outputs found

    Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    Get PDF
    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by ‘swapping’ this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland’s potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be significant, the impacts of this may be greatly diminished when considering wetland size in relation to catchment area. As such, this increased understanding will be valuable when considering the implications of rural land use management for water quality improvement. This knowledge could also be applied to further enhancing our knowledge of gas regional/global gas emissions from freshwater systems, which at the moment are poorly constrained

    The effect of water oxygen content on the production of greenhouse gases from shallow pond sediments

    Get PDF
    Shallow lakes and ponds, including those commonly found in agricultural landscapes are often only a few metres deep, with surface areas <1ha. Despite this, landscapes may contain a high number of these ponds, amounting to a considerable cumulative surface area. Many of these features, both naturally formed and man-made, receive and trap runoff with high nutrient and sediment loadings. As such, the potential for the production of greenhouse gases (GHGs) through biogeochemical cycling in the pond sediments may be significant. Furthermore, the abundance of available nutrients coupled with the shallow physical characteristics of these systems, mean that short, irregular eutrophic episodes during the summer are common, causing large fluctuations in th oxygen content of the overlying water column. The oxygen content of the water column is often cited as key factor in the production of GHGs in large lake and reservoir systems. Given the limited research focusing on shallow ponds/lakes, and potential for these systems to be important sources of GHGs, the impacts of variable water oxygen content should be investigated. Here we present the results from a sediment microcosm experiment utilising sediment cores from an agricultural pond system in Cumbria, UK. Intact sediment cores were incubated in the dark at in-situ temperature and continuously fed with filtered pond water for 2 weeks. During this time the oxygen content of the water was manipulated between fully oxygenated and anaerobic. Measurements of GHG release were based on calculated dissolved gas concentrations present in the water columns of these cores. Results indicated that during times of water column anoxia, production of methane and carbon dioxide increased significantly, despite the presence of substantial quantities of nitrate in the water columns. No change in N2O production was detected. These results indicate that while representing a significant cumulative carbon store in agricultural landscapes, shallow pond and lake systems can contribute to emission of GHGs. Furthermore, the physical and ecological characteristics of these systems have the potential to significantly increase the quantity of gas produced. This understanding will be valuable when constraining both freshwater and agricultural GHG budgets

    Legumes increase grassland productivity with no effect on nitrous oxide emissions

    Get PDF
    Aims: Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods: This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results: Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions: This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers

    Technical note: A bootstrapped LOESS regression approach for comparing soil depth profiles

    Get PDF
    Understanding the consequences of different land uses for the soil system is important to make better informed decisions based on sustainability. The ability to assess change in soil properties, throughout the soil profile, is a critical step in this process. We present an approach to examine differences in soil depth profiles between land uses using bootstrapped LOESS regressions (BLRs). This non-parametric approach is data-driven, unconstrained by distributional model parameters and provides the ability to determine significant effects of land use at specific locations down a soil profile. We demonstrate an example of the BLR approach using data from a study examining the impacts of bioenergy land use change on soil organic carbon (SOC). While this straightforward non-parametric approach may be most useful in comparing SOC profiles between land uses, it can be applied to any soil property which has been measured at satisfactory resolution down the soil profile. It is hoped that further studies of land use and land management, based on new or existing data, can make use of this approach to examine differences in soil profiles

    Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    Get PDF
    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils.This study was financed by the UK Natural Environment Research Council (NERC) grant NE/G018278/1 and is a product of the Andes Biodiversity and Ecosystem Research Group consortium (www.andesconservation.org); Patrick Meir was also supported by ARC FT110100457

    Interactions between climate warming and land management regulate greenhouse gas fluxes in a temperate grassland ecosystem

    Get PDF
    Greenhouse gas (GHG) fluxes from grasslands are affected by climate warming and agricultural management practices including nitrogen (N) fertiliser application and grazing. However, the interactive effects of these factors are poorly resolved in field studies. We used a factorial in situ experiment - combining warming, N-fertiliser and above-ground cutting treatments - to explore their individual and interactive effects on plant-soil properties and GHG fluxes in a temperate UK grassland over two years. Our results showed no interactive treatment effects on plant productivity despite individual effects of N-fertiliser and warming on above- and below-ground biomass. There were, however, interactive treatment effects on GHG fluxes that varied across the two years. In year 1, warming and N-fertiliser increased CO2 and reduced N2O fluxes. N-fertilised also interacted with above-ground biomass (AGB) removal increasing N2O fluxes in year one and reducing CO2 fluxes in year two. The grassland was consistently a sink of CH4; N-fertilised increased the sink by 45% (year 1), AGB removal and warming reduced CH4 consumption by 44% and 43%, respectively (year 2). The majority of the variance in CO2 fluxes was explained by above-ground metrics (grassland productivity and leaf dry matter content), with microclimate (air and soil temperature and soil moisture) and below-ground (root N content) metrics also significant. Soil chemistry (soil mineral N and net mineralisation rate), below-ground (specific root length) and microclimate (soil moisture) metrics explained 49% and 24% of the variance in N2O and CH4 fluxes, respectively. Overall, our work demonstrates the importance of interactions between climate and management as determinants of short-term grassland GHG fluxes. These results show that reduced cutting combined with lower inorganic N-fertilisers would constrain grassland C and N cycling and GHG fluxes in warmer climatic conditions. This has implications for strategic grassland management decisions to mitigate GHG fluxes in a warming world

    Isoprene-degrading bacteria associated with the phyllosphere of Salix fragilis, a high isoprene-emitting willow of the Northern Hemisphere

    Get PDF
    Background: Isoprene accounts for about half of total biogenic volatile organic compound emissions globally, and as a climate active gas it plays a significant and varied role in atmospheric chemistry. Terrestrial plants are the largest source of isoprene, with willow (Salix) making up one of the most active groups of isoprene producing trees. Bacteria act as a biological sink for isoprene and those bacteria associated with high isoprene-emitting trees may provide further insight into its biodegradation. Results: A DNA-SIP experiment incubating willow (Salix fragilis) leaves with 13C-labelled isoprene revealed an abundance of Comamonadaceae, Methylobacterium, Mycobacterium and Polaromonas in the isoprene degrading community when analysed by 16S rRNA gene amplicon sequencing. Metagenomic analysis of 13C-enriched samples confirmed the abundance of Comamonadaceae, Acidovorax, Polaromonas, Variovorax and Ramlibacter. Mycobacterium and Methylobacterium were also identified after metagenomic analysis and a Mycobacterium metagenome-assembled genome (MAG) was recovered. This contained two complete isoprene degradation metabolic gene clusters, along with a propane monooxygenase gene cluster. Analysis of the abundance of the alpha subunit of the isoprene monooxygenase, isoA, in unenriched DNA samples revealed that isoprene degraders associated with willow leaves are abundant, making up nearly 0.2% of the natural bacterial community. Conclusions: Analysis of the isoprene degrading community associated with willow leaves using DNA-SIP and focused metagenomics techniques enabled recovery of the genome of an active isoprene-degrading Mycobacterium species and provided valuable insight into bacteria involved in degradation of isoprene on the leaves of a key species of isoprene-emitting tree in the northern hemisphere

    Interactive effects of climate warming and management on grassland soil respiration partitioning

    Get PDF
    Grassland ecosystems are important for the provision of food, fuel and fibre. They represent globally important carbon (C) reservoirs that are under pressure from intensive management and ongoing climate change. How these drivers of change will interact to affect grassland soil C and nitrogen (N) cycling and heterotrophic and autotrophic respiration remains uncertain. Roots and mycelia in grassland soil are important regulators of ecosystem functioning and likely to be an influential determinant of CO2 fluxes responses to global change. The aim of this study was to investigate the interactive effect of climate warming and grassland management on soil respiration originating from roots rhizosphere, mycelia and free-living microbes. The experiment used a block design to measure the interactive effects of warming, nitrogen addition, aboveground biomass (AGB) removal on belowground respiration in a temperate grassland ecosystem. An in-growth core method using cores with different mesh sizes was used to partition belowground respiration due to its simplicity of design and efficacy. We found that basal respiration (free-living microorganisms) was the highest (58.5% of the total emissions), followed by that from roots (22.8%) and mycelia (18.7%) across all treatments. Warming reduced basal respiration whilst AGB removal increased it. An antagonistic interaction between warming and nitrogen addition reduced root respiration, and a three-way interaction between warming, nitrogen addition and AGB removal affected mycelial respiration. The results show different contributions of belowground biota to soil respiration, and how interactions between climate change and grassland management may influence effects on soil respiration

    Functional differences in the microbial processing of recent assimilates under two contrasting perennial bioenergy plantations

    Get PDF
    Land use change driven alteration of microbial communities can have implications on belowground C cycling and storage, although our understanding of the interactions between plant C inputs and soil microbes is limited. Using phospholipid fatty acids (PLFA's) we profiled the microbial communities under two contrasting UK perennial bioenergy crops, Short Rotation Coppice (SRC) willow and Miscanthus Giganteus (miscanthus), and used 13C – pulse labelling to investigate how recent carbon (C) assimilates were transferred through plant tissues to soil microbes. Total PLFA's and fungal to bacterial (F:B) ratios were higher under SRC willow (Total PLFA = 47.70 ± 1.66 SE μg PLFA g−1 dry weight soil, F:B = 0.27 ± 0.01 SE) relative to miscanthus (Total PLFA = 30.89 ± 0.73 SE μg PLFA g−1 dry weight soil, F:B = 0.17 ± 0.00 SE). Functional differences in microbial communities were highlighted by contrasting processing of labelled C. SRC willow allocated 44% of total 13C detected into fungal PLFA relative to 9% under miscanthus and 380% more 13C was returned to the atmosphere in soil respiration from SRC willow soil compared to miscanthus. Our findings elucidate the roles that bacteria and fungi play in the turnover of recent plant derived C under these two perennial bioenergy crops, and provide important evidence on the impacts of land use change to bioenergy on microbial community composition

    Predicted soil greenhouse gas emissions from climate x management interactions in temperate grassland

    Get PDF
    Grassland management practices and their interactions with climatic variables have significant impacts on soil greenhouse gas (GHG) emissions. Mathematical models can be used to simulate the impacts of management and potential changes in climate beyond the temporal extent of short-term field experiments. In this study, field measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) emissions from grassland soils were used to test and validate the DNDC (DeNitrification-DeComposition) model. The model was then applied to predict changes in GHG emissions due to interactions between climate warming and grassland management in a 30-year simulation. Sensitivity analysis showed that the DNDC model was susceptible to changes in temperature, rainfall, soil carbon and N-fertiliser rate for predicting N2O and CO2 emissions, but not for net CH4 emissions. Validation of the model suggests that N2O emissions were well described by N-fertilised treatments (relative variation of 2%), while non-fertilised treatments showed higher variations between measured and simulated values (relative variation of 26%). CO2 emissions (plant and soil respiration) were well described by the model prior to hay meadow cutting but afterwards measured emissions were higher than those simulated. Emissions of CH4 were on average negative and largely negligible for both simulated and measured values. Long-term scenario projections suggest that net GHG emissions would increase over time under all treatments and interactions. Overall, this study confirms that GHG emissions from intensively managed, fertilised grasslands are at greater risk of being amplified through climate warming, and represent a greater risk of climate feedbacks
    • …
    corecore