5 research outputs found

    GRB 170817A as a Refreshed Shock Afterglow viewed off-axis

    Full text link
    Energy injection into the external shock system that generates the afterglow to a gamma-ray burst (GRB) can result in a re-brightening of the emission. Here we investigate the off-axis view of a re-brightened refreshed shock afterglow. We find that the afterglow light-curve, when viewed from outside of the jet opening angle, could be characterised by a slow rise, or long-plateau, with a maximum flux determined by the total system energy. Using the broadband afterglow data for GRB170817A, associated with the gravitational wave detected binary neutron star merger GW170817, we show that a refreshed shock model with a simple top-hat jet can reproduce the observed afterglow features. We consider two particular refreshed shock models: a single episode of energy injection; and a period of continuous energy injection. The best fit model parameters give a jet opening angle, for our first or second model of θj=5.2−0.6+1.1 \theta_j=5.2^{+1.1}_{-0.6}~or 6.3−1.1+1.7~6.3^{+1.7}_{-1.1} deg, an inclination to the line of sight ι=16.0−1.1+3.4 \iota=16.0^{+3.4}_{-1.1}~or 17.8−2.9+4.5~17.8^{+4.5}_{-2.9} deg, an initial isotropic equivalent kinetic energy E1=(0.3−0.3+3.5 E_1 = (0.3^{+3.5}_{-0.3}~or 0.5−0.2+6.7)×1052~0.5^{+6.7}_{-0.2})\times10^{52}erg and a total/final, refreshed shock energy Etotal=(0.42−0.4+5.6 E_{\rm total}=(0.42^{+5.6}_{-0.4}~or 1.26−0.7+18.2)×1053~1.26^{+18.2}_{-0.7})\times10^{53}erg. The first model fitting prefers an initial bulk Lorentz factor Γ0,1<60\Gamma_{0,1}<60, with a comparatively low central value of Γ0,1=19.5\Gamma_{0,1}=19.5, indicating that, in this case, the on-axis jet could have been a `failed-GRB'. Alternatively, our second model is consistent with a bright GRB for an on-axis observer, with Γ0,1=162.2−122.1+219.7\Gamma_{0,1}=162.2^{+219.7}_{-122.1}. Due to the low-Lorentz factor or the jet opening angles at θj∼ι/3\theta_j\sim\iota/3, both models are unable to reproduce the γ\gamma-ray emission observed in GRB170817A, which would therefore require an alternative explanation such as cocoon shock-breakout

    GRB jet structure and the jet break

    Full text link
    We investigate the shape of the jet break in within-beam gamma-ray burst (GRB) optical afterglows for various lateral jet structure profiles. We consider cases with and without lateral spreading and a range of inclinations within the jet core half-opening angle, θc. We fit model and observed afterglow light curves with a smoothly-broken power-law function with a free-parameter κ that describes the sharpness of the break. We find that the jet break is sharper (κ is greater) when lateral spreading is included than in the absence of lateral spreading. For profiles with a sharp-edged core, the sharpness parameter has a broad range of 0.1 ≲ κ ≲ 4.6, whereas profiles with a smooth-edged core have a narrower range of 0.1 ≲ κ ≲ 2.2 when models both with and without lateral spreading are included. For sharp-edged jets, the jet break sharpness depends strongly on the inclination of the system within θc, whereas for smooth-edged jets, κ is more strongly dependent on the size of θc. Using a sample of 20 GRBs, we find 9 candidate smooth-edged jet structures and 8 candidate sharp-edged jet structures, while the remaining 3 are consistent with either. The shape of the jet break, as measured by the sharpness parameter κ, can be used as an initial check for the presence of lateral structure in within-beam GRBs where the afterglow is well-sampled at and around the jet-break time

    Strong damped Lyman-α absorption in young star-forming galaxies at redshifts 9 to 11

    No full text
    Primordial neutral atomic gas, mostly composed of hydrogen, is the raw material for star formation in galaxies. However, there are few direct constraints on the amount of neutral atomic hydrogen (H  i ) in galaxies at early cosmic times. We analyzed James Webb Space Telescope (JWST) near-infrared spectroscopy of distant galaxies, at redshifts ≳8. From a sample of 12 galaxies, we identified three that show strong damped Lyman-α absorption due to H  i in their local surroundings. The galaxies are located at spectroscopic redshifts of 8.8, 10.2, and 11.4, corresponding to 400 to 600 million years after the Big Bang. They have H  i column densities ≳10 22 cm −2 , which is an order of magnitude higher than expected for a fully neutral intergalactic medium, and constitute a gas-rich population of young star-forming galaxies.</p

    GRB 180418A: A possibly-short GRB with a wide-angle outflow in a faint host galaxy

    Full text link
    We present X-ray and multi-band optical observations of the afterglow and host galaxy of GRB 180418A, discovered by Swift/BAT and Fermi/GBM. We present a reanalysis of the GBM and BAT data deriving durations of the prompt emission of T_90~2.56s and ~1.90s, respectively. Modeling the Fermi/GBM catalog of 1405 bursts (2008-2014) in the Hardness-T_90 plane, we obtain a probability of ~60% that GRB 180418A is a short-hard burst. From a combination of Swift/XRT and Chandra observations, the X-ray afterglow is detected to ~38.5 days after the burst, and exhibits a single power-law decline with F_X proportional to t^-0.98. Late-time Gemini observations reveal a faint r ~24.95 mag host galaxy at an angular offset of ~0.16''. At the likely redshift range of z ~1-1.5, we find that the X-ray afterglow luminosity of GRB 180418A is intermediate between short and long GRBs at all epochs during which there is contemporaneous data, and that GRB 180418A lies closer to the E_({\gamma},peak)-E_({\gamma},iso) correlation for short GRBs. Modeling the multi-wavelength afterglow with the standard synchrotron model, we derive the burst explosion properties and find a jet opening angle of {\theta}_j =>9-14 degrees. If GRB 180418A is a short GRB that originated from a neutron star merger, it has one of the brightest and longest-lived afterglows along with an extremely faint host galaxy. If instead the event is a long GRB that originated from a massive star collapse, it has among the lowest luminosity afterglows, and lies in a peculiar space in terms of the Hardness-T_90 and E_({\gamma},peak)-E_({\gamma},iso) planes

    Heavy element production in a compact object merger observed by JWST

    No full text
    The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GW)2 and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright gamma-ray burst GRB 230307A. We show that GRB 230307A belongs to the class of long-duration gamma-ray bursts associated with compact object mergers4–6, and contains a kilonova similar to AT2017gfo, associated with the gravitational-wave merger GW1708177–12. We obtained James Webb Space Telescope mid-infrared (mid-IR) imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns which we interpret as tellurium (atomic mass A=130), and a very red source, emitting most of its light in the mid-IR due to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy element nucleosynthesis across the Universe.</p
    corecore