20,161 research outputs found

    Suspension of the fiber mode-cleaner launcher and measurement of the high extinction-ratio (10^{-9}) ellipsometer for the Q & A experiment

    Full text link
    The Q & A experiment, first proposed and started in 1994, provides a feasible way of exploring the quantum vacuum through the detection of vacuum birefringence effect generated by QED loop diagram and the detection of the polarization rotation effect generated by photon-interacting (pseudo-)scalar particles. Three main parts of the experiment are: (1) Optics System (including associated Electronic System) based on a suspended 3.5-m high finesse Fabry-Perot cavity, (2) Ellipsometer using ultra-high extinction-ratio polarizer and analyzer, and (3) Magnetic Field Modulation System for generating the birefringence and the polarization rotation effect. In 2002, the Q & A experiment achieved the Phase I sensitivity goal. During Phase II, we set (i) to improve the control system of the cavity mirrors for suppressing the relative motion noise, (ii) to enhance the birefringence signal by setting-up a 60-cm long 2.3 T transverse permanent magnet rotatable to 10 rev/s, (iii) to reduce geometrical noise by inserting a polarization-maintaining optical fiber (PM fiber) as a mode cleaner, and (iv) to use ultra-high extinction-ratio (10^{-9}) polarizer and analyzer for ellipsometry. Here we report on (iii) & (iv); specifically, we present the properties of the PM-fiber mode-cleaner, the transfer function of its suspension system, and the result of our measurement of high extinction-ratio polarizer and analyzer.Comment: 8 pages, 6 figures, presented in the 6th Edoardo Amaldi Conference on Gravitational Waves, Okinawa, Japan, June 2005, and accepted by "Journal of Physics: Conference Series". Modifications from version 2 were made based on the referees' comments on figures. Ref. [31] were update

    λϕ4\lambda\phi^4 model and Higgs mass in standard model calculated by Gaussian effective potential approach with a new regularization-renormalization method

    Full text link
    Basing on new regularization-renormalization method, the λϕ4\lambda\phi^4 model used in standard model is studied both perturbatively and nonperturbatively (by Gaussian effective potential). The invariant property of two mass scales is stressed and the existence of a (Landau) pole is emphasized. Then after coupling with the SU(2)×\timesU(1) gauge fields, the Higgs mass in standard model (SM) can be calculated as mH≈m_H\approx138GeV. The critical temperature (TcT_c) for restoration of symmetry of Higgs field, the critical energy scale (ÎŒc\mu_c, the maximum energy scale under which the lower excitation sector of the GEP is valid) and the maximum energy scale (ÎŒmax\mu_{max}, at which the symmetry of the Higgs field is restored) in the standard model are Tc≈T_c\approx476 GeV, ÎŒc≈0.547×1015\mu_c\approx 0.547\times 10^{15}GeV and ÎŒmax⁡≈0.873×1015\mu_{\max}\approx 0.873 \times 10^{15} GeVv respectively.Comment: 12 pages, LaTex, no figur

    Antiparticle in Light of Einstein-Podolsky-Rosen Paradox and Klein Paradox

    Full text link
    The original version of Einstein-Podolsky-Rosen (EPR) paradox and the Klein paradox of Klein-Gordon (KG) equation are discussed to show the necessity of existence of antiparticle with its wavefunction being fixed unambiguously. No concept of "hole" is needed.Comment: 4 pages, 0 figures. Accepted by Chinese Phys. Let

    Ellipsometry noise spectrum, suspension transfer function measurement and closed-loop control of the suspension system in the Q & A experiment

    Full text link
    The Q & A experiment, aiming at the detection of vacuum birefringence predicted by quantum electrodynamics, consists mainly of a suspended 3.5 m Fabry-Perot cavity, a rotating permanent dipole magnet and an ellipsometer. The 2.3 T magnet can rotate up to 10 rev/s, introducing an ellipticity signal at twice the rotation frequency. The X-pendulum gives a good isolation ratio for seismic noise above its main resonant frequency 0.3 Hz. At present, the ellipsometry noise decreases with frequency, from 1*10^{-5} rad Hz^{-1/2} at 5 Hz, 2*10^{-6} rad Hz^{-1/2} at 20 Hz to 5*10^{-7} rad Hz^{-1/2} at 40 Hz. The shape of the noise spectrum indicates possible improvement can be made by further reducing the movement between the cavity mirrors. From the preliminary result of yaw motion alignment control, it can be seen that some peaks due to yaw motion of the cavity mirror was suppressed. In this paper, we first give a schematic view of the Q & A experiment, and then present the measurement of transfer function of the compound X-pendulum-double pendulum suspension. A closed-loop control was carried out to verify the validity of the measured transfer functions. The ellipsometry noise spectra with and without yaw alignment control and the newest improvement is presented.Comment: 7 pages, 5 figures, presented in 6th Edoardo Amaldi Conference on Gravitational Waves, June 2005, Okinawa Japan and submitted to Journal of Physics: Conference Series. Some modifications are made according to the referee's comments: mainly to explain the relation between the displacement of cavity mirror and the ellipticity noise spectru

    Large magnetic penetration depth and thermal fluctuations in a Ca10_{10}(Pt3_{3}As8_{8})[(Fe1−x_{1-x}Ptx_{x})2_{2}As2_{2}]5_{5} (x=0.097) single crystal

    Get PDF
    We have measured the temperature dependence of the absolute value of the magnetic penetration depth λ(T)\lambda(T) in a Ca10_{10}(Pt3_{3}As8_{8})[(Fe1−x_{1-x}Ptx_{x})2_{2}As2_{2}]5_{5} (x=0.097) single crystal using a low-temperature magnetic force microscope (MFM). We obtain λab\lambda_{ab}(0)≈\approx1000 nm via extrapolating the data to T=0T = 0. This large λ\lambda and pronounced anisotropy in this system are responsible for large thermal fluctuations and the presence of a liquid vortex phase in this low-temperature superconductor with critical temperature of 11 K, consistent with the interpretation of the electrical transport data. The superconducting parameters obtained from λ\lambda and coherence length Ο\xi place this compound in the extreme type \MakeUppercase{\romannumeral 2} regime. Meissner responses (via MFM) at different locations across the sample are similar to each other, indicating good homogeneity of the superconducting state on a sub-micron scale

    Collisional stability of fermionic Feshbach molecules

    Full text link
    Using a Feshbach resonance, we create ultracold fermionic molecules starting from a Bose-Fermi atom gas mixture. The resulting mixture of atoms and weakly bound molecules provides a rich system for studying few-body collisions because of the variety of atomic collision partners for molecules; either bosonic, fermionic, or distinguishable atoms. Inelastic loss of the molecules near the Feshbach resonance is dramatically affected by the quantum statistics of the colliding particles and the scattering length. In particular, we observe a molecule lifetime as long as 100 ms near the Feshbach resonance.Comment: 4 pages, 4 figures, 1 tabl

    A nonlocal eigenvalue problem and the stability of spikes for reaction-diffusion systems with fractional reaction rates

    Get PDF
    We consider a nonlocal eigenvalue problem which arises in the study of stability of spike solutions for reaction-diffusion systems with fractional reaction rates such as the Sel'kov model, the Gray-Scott system, the hypercycle Eigen and Schuster, angiogenesis, and the generalized Gierer-Meinhardt system. We give some sufficient and explicit conditions for stability by studying the corresponding nonlocal eigenvalue problem in a new range of parameters
    • 

    corecore