We consider a nonlocal eigenvalue problem which arises in the study of stability of spike solutions for reaction-diffusion systems with
fractional reaction rates such as the Sel'kov model, the
Gray-Scott system, the hypercycle Eigen and Schuster, angiogenesis, and the generalized Gierer-Meinhardt
system.
We give some sufficient and explicit conditions for stability
by studying the corresponding nonlocal eigenvalue problem in a new
range of parameters