28 research outputs found

    Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications

    Get PDF
    Iron oxide nanoparticles (IONPs) are well-known contrast agents for MRI for a wide range of sizes and shapes. Their use as theranostic agents requires a better understanding of their magnetic hyperthermia properties and also the design of a biocompatible coating ensuring their stealth and a good biodistribution to allow targeting of specific diseases. Here, biocompatible IONPs of two different shapes (spherical and octopod) were designed and tested in vitro and in vivo to evaluate their abilities as high-end theranostic agents. IONPs featured a dendron coating that was shown to provide anti-fouling properties and a small hydrodynamic size favoring an in vivo circulation of the dendronized IONPs. While dendronized nanospheres of about 22 nm size revealed good combined theranostic properties (r2 = 303 mM s−1, SAR = 395 W gFe−1), octopods with a mean size of 18 nm displayed unprecedented characteristics to simultaneously act as MRI contrast agents and magnetic hyperthermia agents (r2 = 405 mM s−1, SAR = 950 W gFe−1). The extensive structural and magnetic characterization of the two dendronized IONPs reveals clear shape, surface and defect effects explaining their high performance. The octopods seem to induce unusual surface effects evidenced by different characterization techniques while the nanospheres show high internal defects favoring Néel relaxation for magnetic hyperthermia. The study of octopods with different sizes showed that Néel relaxation dominates at sizes below 20 nm while the Brownian one occurs at higher sizes. In vitro experiments demonstrated that the magnetic heating capability of octopods occurs especially at low frequencies. The coupling of a small amount of glucose on dendronized octopods succeeded in internalizing them and showing an effect of MH on tumor growth. All measurements evidenced a particular signature of octopods, which is attributed to higher anisotropy, surface effects and/or magnetic field inhomogeneity induced by tips. This approach aiming at an analysis of the structure–property relationships is important to design efficient theranostic nanoparticles.The Region Alsace, France, and the Labex Chimie des Systemes Complexes, University of Strasbourg, France are gratefully acknowledged for the doctoral fellowship to Geoffrey Cotin. This research project was also co-funded by Labex CSC, Alsace contre le cancer, INCA (project PRTK14, THERAMAG 2014-225) and the INTERREG project NANOTRANSMED. The “NANOTRANSMED” project is co-funded by the European Regional Development Fund (ERDF) and by the Swiss Confederation and the Swiss cantons of Aargau, Basel-Landschaft and Basel-Stadt, in the framework of the INTERREG V Upper Rhine program (“Transcending borders with every project”). The authors thank Morgane Rabineau for epifluorescence imaging and Nadia Messaddeq for TEM imaging of cells. The authors thank the Center for Microscopy and Molecular Imaging (CMMI, supported by the European Regional Development Fund and the Walloon Region). This work was supported by the Fond National de la Recherche Scientifique (FNRS), UIAP VII, ARC Programs of the French Community of Belgium and the Walloon region (Gadolymph and Holocancer programs). All the authors acknowledge the COST action TD1402 “RADIOMAG”. D. Ortega and F. J. Teran acknowledge support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686), the Spanish Ministry of Economy and Competitiveness for the NANOLICO project (MAT2017-85617-R), the Spanish Ministry of Science through the NaNoCAR grant PID2020-117544RB-I00, the Ramón y Cajal grant RYC2018-025253-I and Research Networks grant RED2018-102626-T, the HEATOOLS project (BIO2017-84246-C2-1-R), the Comunidad de Madrid for grant NANOMAGCOST (P2018/NMT-4321), DGA for public funding from Fondo Social (grupos DGA), and the European Commission for the funding received through the H2020 “NoCanTher” project (GA No. 685795).Peer reviewe

    Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on

    No full text
    Coarse Grained Reconfigurable Architectures (CGRAs) are emerging as enabling platforms to meet the high performance demanded by modern embedded applications. In many application domains (e.g. robotics and cognitive embedded systems), the CGRAs are required to simultaneously host processing (e.g. Audio/video acquisition) and estimation (e.g. audio/video/image recognition) tasks. Recent works have revealed that the efficiency and scalability of the estimation algorithms can be significantly improved by using neural networks. However, existing CGRAs commonly employ homogeneous processing resources for both the tasks. To realize the best of both the worlds (conventional processing and neural networks), we present FIST. FIST allows the processing elements and the network to dynamically morph into either conventional CGRA or a neural network, depending on the hosted application. We have chosen the DRRA as a vehicle to study the feasibility and overheads of our approach. Synthesis results reveal that the proposed enhancements incur negligible overheads (4.4% area and 9.1% power) compared to the original DRRA cell.</div

    Abdominal multislice CT for obese patients: effect on image quality and radiation dose in a phantom study

    No full text
    RATIONALE AND OBJECTIVES: To evaluate the effect of a modified abdominal multislice computed tomography (CT) protocol for obese patients on image quality and radiation dose. MATERIALS AND METHODS: An adult female anthropomorphic phantom was used to simulate obese patients by adding one or two 4-cm circumferential layers of fat-equivalent material to the abdominal portion. The phantom was scanned with a subcutaneous fat thickness of 0, 4, and 8 cm using the following parameters (detector configuration/beam pitch/table feed per rotation/gantry rotation time/kV/mA): standard protocol A: 16 x 0.625 mm/1.75/17.5 mm/0.5 seconds/140/380, and modified protocol B: 16 x 1.25 mm/1.375/27.5 mm/1.0 seconds/140/380. Radiation doses to six abdominal organs and the skin, image noise values, and contrast-to-noise ratios (CNRs) were analyzed. Statistical analysis included analysis of variance, Wilcoxon rank sum, and Student's t-test (P .05). CONCLUSIONS: Using a modified abdominal multislice CT protocol for obese patients with 8 cm or more of subcutaneous fat, image quality can be substantially improved without a significant increase in radiation dose to the abdominal organs
    corecore