813 research outputs found

    Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies

    Full text link
    © 2018 Elsevier Ltd Calcium carbonate (CaCO3)-enriched biomaterial derived from freshwater mussel shells (FMS) was used as a non-porous biosorbent to explore the characteristics and mechanisms of cadmium adsorption in aqueous solution. The adsorption mechanism was proposed by comparing the FMS properties before and after adsorption alongside various adsorption studies. The FMS biosorbent was characterized using nitrogen adsorption/desorption isotherm, X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, Fourier-transform infrared spectroscopy, and point of zero charge. The results of batch experiments indicated that FMS possessed an excellent affinity to Cd(II) ions within solutions pH higher than 4.0. An increase in ionic strength resulted in a significant decrease in the amount of Cd(II) adsorbed onto FMS. Kinetic study demonstrated that the adsorption process quickly reached equilibrium at approximately 60 min. The FMS biosorbent exhibited the Langmuir maximum adsorption capacity as follows: 18.2 mg/g at 10 °C Cd2+ > Cu2+ > Cr3+ > Zn2+. For column experiments, the highest Thomas adsorption capacity (7.86 mg/g) was achieved at a flow rate (9 mL/min), initial Cd(II) concentration (10 mg/L), and bed height (5 cm). The Cd(II) removal by FMS was regarded as non-activated chemisorption that occurred very rapidly (even at a low temperature) with a low magnitude of activation energy. Primary adsorption mechanism was surface precipitation. Cadmium precipitated in the primary (Cd,Ca)CO3 form with a calcite-type structure on the FMS surface. A crust of rhombohedral crystals on the substrate was observed by SEM. Freshwater mussel shells have the potential as a renewable adsorbent to remove cadmium from water

    A novel numerical model to predict the morphological behavior of magnetic liquid marbles using coarse grained molecular dynamics concepts

    Full text link
    © 2018 Author(s). Liquid marbles are liquid droplets coated with superhydrophobic powders whose morphology is governed by the gravitational and surface tension forces. Small liquid marbles take spherical shapes, while larger liquid marbles exhibit puddle shapes due to the dominance of gravitational forces. Liquid marbles coated with hydrophobic magnetic powders respond to an external magnetic field. This unique feature of magnetic liquid marbles is very attractive for digital microfluidics and drug delivery systems. Several experimental studies have reported the behavior of the liquid marbles. However, the complete behavior of liquid marbles under various environmental conditions is yet to be understood. Modeling techniques can be used to predict the properties and the behavior of the liquid marbles effectively and efficiently. A robust liquid marble model will inspire new experiments and provide new insights. This paper presents a novel numerical modeling technique to predict the morphology of magnetic liquid marbles based on coarse grained molecular dynamics concepts. The proposed model is employed to predict the changes in height of a magnetic liquid marble against its width and compared with the experimental data. The model predictions agree well with the experimental findings. Subsequently, the relationship between the morphology of a liquid marble with the properties of the liquid is investigated. Furthermore, the developed model is capable of simulating the reversible process of opening and closing of the magnetic liquid marble under the action of a magnetic force. The scaling analysis shows that the model predictions are consistent with the scaling laws. Finally, the proposed model is used to assess the compressibility of the liquid marbles. The proposed modeling approach has the potential to be a powerful tool to predict the behavior of magnetic liquid marbles serving as bioreactors

    Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review

    Full text link
    © 2019 Elsevier B.V. An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl−, NO3−, SO42−, and CO32−) provide a high anion exchange capacity (53–520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer–Emmett–Teller specific surface area of LDH (1.80–179 m2/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Qomax) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Qomax values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° 0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater

    Low-cost laterite-laden household filters for removing arsenic from groundwater in Vietnam and waste management

    Full text link
    This study evaluated the performance of a low-cost natural laterite from Thach That (NLTT), Vietnam, for its capacity to remove arsenic (As) in a household filter with contaminated groundwater. The NLTT was initially tested in a laboratory column trial lasting 800 h. The breakthrough curves were found to fit the Thomas model very satisfactorily with adsorption capacities of 0.06 and 0.20 mg/g at a flow velocity of 0.85 m/h for the influent As(V) concentrations of 0.1 and 0.5 mg/L, respectively. In household filters at four sites, the median As concentration in groundwaters (0.04–0.19 mg/L) dropped to 0.026–0.054 mg/L after traditional sand filtration. However, following subsequent NLTT filtration through columns (14 cm inner diameter, 65 cm height) at 0.65 m/h flow velocity, it fell to below the Vietnam and WHO drinking water standard (0.01 mg/L) during seven months of continuous operation. Portland cement and lime were tested as binding agents for the exhausted NLTT waste in a solidification/stabilization process at different ratios. The best ratio of exhausted NLTT: Portland cement: lime for restraining mobility of As from this waste was 3:1:0.5. The concrete brick products exhibited a suitable compressive strength for using it as building materials in construction work

    Maged1, a new regulator of skeletal myogenic differentiation and muscle regeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In normal adult skeletal muscle, cell turnover is very slow. However, after an acute lesion or in chronic pathological conditions, such as primary myopathies, muscle stem cells, called satellite cells, are induced to proliferate, then withdraw definitively from the cell cycle and fuse to reconstitute functional myofibers.</p> <p>Results</p> <p>We show that Maged1 is expressed at very low levels in normal adult muscle but is strongly induced after injury, during the early phase of myoblast differentiation. By comparing in vitro differentiation of myoblasts derived from wild-type or Maged1 knockout mice, we observed that Maged1 deficiency results in reduced levels of p21<sup>CIP1/WAF1</sup>, defective cell cycle exit and impaired myotube maturation. In vivo, this defect results in delayed regeneration of injured muscle.</p> <p>Conclusions</p> <p>These data demonstrate for the first time that Maged1 is an important factor required for proper skeletal myoblast differentiation and muscle healing.</p

    Solving the problem of stacking goods: mathematical model, heuristics and a case study in container stacking in ports

    Get PDF
    Stacking goods or items is one of the most common operations in everyday life. It happens abundantly in not only transportation applications such as container ports, container ships, warehouses, factories, sorting centers, freight terminals, etc., but also computing systems, supermarkets, and so on. We investigate the problem of stacking a sequence of items into a set of capacitated stacks, subject to stacking constraints. In every stack, items are accessed in the last-in-first-out order. So at retrieval time, getting any lower item requires reshuffling all upper items that are blocking the way (called blocking items). These reshuffles are redundant and expensive. The challenge is to prevent reshuffles from happening. For this purpose, we aim at assigning items to stacks to minimize the number of blocking items with respect to the retrieval order. We provide some mathematical analyses on the feasibility of this problem and lower bounds. Besides, we provide a mathematical model and a two-step heuristic framework. We illustrate the applications of these models and heuristic framework in the real cargo handling process in an Asian port. Experimental results on real scenarios show that the proposed model can eliminate almost all reshuffles, and thus decrease the number of stacking violations from 62.6 % to 0.9 %. We also provide an empirical analysis of variants of the heuristic framework

    Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review

    Full text link
    © 2019, © 2019 Taylor & Francis Group, LLC. Contaminants in water bodies cause potential health risks for humans and great environmental threats. Therefore, the development and exploration of low-cost, promising adsorbents to remove contaminants from water resources as a sustainable option is one focus of the scientific community. Here, we conducted a critical review regarding the application of pristine and modified/treated biosorbents derived from leaves for the removal of various contaminants. These include potentially toxic cationic and oxyanionic metal ions, radioactive metal ions, rare earth elements, organic cationic and anionic dyes, phosphate, ammonium, and fluoride from water media. Similar to lignocellulose-based biosorbents, leaf-based biosorbents exhibit a low specific surface area and total pore volume but have abundant surface functional groups, high concentrations of light metals, and a high net surface charge density. The maximum adsorption capacity of biosorbents strongly depends on the operation conditions, experiment types, and adsorbate nature. The absorption mechanism of contaminants onto biosorbents is complex; therefore, typical experiments used to identify the primary mechanism of the adsorption of contaminants onto biosorbents were thoroughly discussed. It was concluded that byproduct leaves are renewable, biodegradable, and promising biosorbents which have the potential to be used as a low-cost green alternative to commercial activated carbon for effective removal of various contaminants from the water environment in the real-scale plants
    • …
    corecore