

Lersteau, C, Nguyen, TT, Le, TT, Nguyen, HN and Shen, W

 Solving the problem of stacking goods: mathematical model, heuristics and a
case study in container stacking in ports

http://researchonline.ljmu.ac.uk/id/eprint/14255/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Lersteau, C, Nguyen, TT, Le, TT, Nguyen, HN and Shen, W Solving the
problem of stacking goods: mathematical model, heuristics and a case
study in container stacking in ports. IEEE Access. ISSN 2169-3536
(Accepted)

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Solving the problem of stacking goods:
mathematical model, heuristics and a
case study in container stacking in ports
CHARLY LERSTEAU1,2, TRUNG THANH NGUYEN2, TRI THANH LE3, HA NAM NGUYEN4,
WEIMING SHEN1.
1State Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong University of Science and Technology, Wuhan, 430074, China (e-mails:
charly.lersteau@gmx.fr, wshen@ieee.org)
2Faculty of Engineering and Technology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom (e-mail: T.T.Nguyen@ljmu.ac.uk)
3Faculty of Information and Technology, Vietnam Maritime University (e-mail: thanhlt@vimaru.edu.vn)
4Information Technology Institute, Vietnam National University, Hanoi (e-mail: namnh@vnu.edu.vn)

Corresponding author: Trung Thanh Nguyen (e-mail: T.T.Nguyen@ljmu.ac.uk).

This work was supported by Newton Institutional Links grant no. 172734213 by the UK BEIS.

ABSTRACT Stacking goods or items is one of the most common operations in everyday life. It happens
abundantly in not only transportation applications such as container ports, container ships, warehouses,
factories, sorting centers, freight terminals, etc., but also computing systems, supermarkets, and so on. We
investigate the problem of stacking a sequence of items into a set of capacitated stacks, subject to stacking
constraints. In every stack, items are accessed in the last-in-first-out order. So at retrieval time, getting any
lower item requires reshuffling all upper items that are blocking the way (called blocking items). These
reshuffles are redundant and expensive. The challenge is to prevent reshuffles from happening. For this
purpose, we aim at assigning items to stacks to minimize the number of blocking items with respect to
the retrieval order. We provide some mathematical analyses on the feasibility of this problem and lower
bounds. Besides, we provide a mathematical model and a two-step heuristic framework. We illustrate the
applications of these models and heuristic framework in the real cargo handling process in an Asian port.
Experimental results on real scenarios show that the proposed model can eliminate almost all reshuffles,
and thus decrease the number of stacking violations from 62.6 % to 0.9 %. We also provide an empirical
analysis of variants of the heuristic framework.

INDEX TERMS Combinatorial optimization, Containers, Heuristic algorithms, Linear Programming,
Logistics, Optimization methods, Stacking

I. INTRODUCTION1

THE problem of stacking goods/items (we call it the2

Stack Loading Problem, abbreviated as SLP) arises in3

many applications such as container terminals, warehouses,4

factories, supermarkets, computer memory, and so on. In5

these environments, items (or goods) arrive in a given order6

and are assumed to be loaded immediately in one or multiple7

stacks, one item on top of another. The arrangement of items8

in the stacks is called a configuration. These items can be9

retrieved later but not necessarily in the same order as they10

arrive. In many settings, the stacks can only be accessed from11

the top. It means that if an item has to be retrieved before the12

items above it, all the upper items, called blocking items, will13

have to be reshuffled. Similarly, if some of the loaded items14

in the stacks violate stability, load-bearing, or other stacking 15

requirements (e.g. heavier items are on top of lighter ones), 16

reshuffles will also be needed. Besides, some applications 17

strictly forbid putting some items above some other items. 18

Such restrictions are called hard stacking constraints. For 19

example, they occur when lighter items cannot bear heavy 20

upper items, or when some items contain dangerous goods. 21

Reshuffles can lead to an excessive number of redundant 22

moves and a significant increase in cost and/or time. Take the 23

case of container terminals as an example. Published tariffs 24

from ports worldwide, e.g. Liverpool (Europe) [24], Portland 25

(America) [23] and Klang (Asia) [20] indicate that the cost 26

for a single reshuffle move can be very expensive, equal to 27

25-44 % the total cost of handling, storing and transporting 28

VOLUME 4, 2016 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a container through all stages of the port. Given that 90 %1

of the world’s dry/non-bulk manufactured goods are shipped2

in ocean containers [6], container reshuffling in stacks is a3

significant issue.4

This paper attempts to minimize reshuffles in stacks by5

minimizing the number of blocking items while making sure6

that no item violates hard stacking constraints. It has the7

following contributions: (1) Lemmas on the feasibility of8

the problem and lower bounds, (2) A mathematical model9

which allows the problem to be solved to optimality, (3)10

Applications of the proposed model on a real-world problem11

in an Asian port, showing a significant improvement in12

stacking efficiency, (4) A two-step heuristic framework with13

several variants, (5) An empirical analysis of these variants.14

Please note that the newly proposed model can be seen as an15

extension of already existing models such as [15].16

a: Related work17

In a comprehensive survey, Lehnfeld and Knust [19] gave18

a classification scheme of stacking problems in three cat-19

egories: loading, pre-marshalling, and unloading problems.20

The problem investigated in this paper is a loading problem21

according to the classifications from [19]. Using the three-22

field notation detailed in [19], our problem can be denoted23

by L|πin,sij |BI, where BI is an objective function defined in24

Section II. In this section, we provide a literature review of25

related works.26

Kim et al. [15] proposed IP models and heuristics for27

relaxed versions of SLP, i.e. without hard stacking constraints28

and stack height limit. They tackle two cases: when reshuf-29

fled items are pushed back to their stack of origin, and when30

they are not. Boysen and Emde [2] tackled another relaxed31

SLP, called PSLP. The objective is to minimize the number32

of blockages, i.e. the number of pairs of adjacent items such33

that the upper item blocks the lower one. They presented IP34

models, a dynamic programming procedure, and two heuris-35

tics. Boge and Knust [1] further studied several objective36

functions for the PSLP: the number of blockages, the number37

of blocking items, and the number of reshuffles. Whereas the38

arrival order of items is imposed and reshuffles are forbidden,39

the PSLP does not include hard stacking constraints, i.e.40

arbitrarily imposing that an item cannot be put above another41

one. As solution methods, MIP formulations and a simulated42

annealing algorithm were given. Bruns et al. [4] presented43

complexity results on several loading problems. One of them44

consists in minimizing the number of unordered stackings45

with hard stacking constraints but assuming that each stack46

cannot store more than two items. They proved that the latter47

can be solved in polynomial time. Delgado et al. [8] proposed48

an integer and a constraint programming models to optimize49

a weighted sum of four objectives, including the number50

of blocking items. However, they assumed that the arrival51

order of items is not imposed. Parreño et al. [22] extended52

the previous problem to handle items transporting dangerous53

goods and an additional objective. Guerra-Olivares et al. [13]54

analyzed the sensitivity of three stacking strategies (hori-55

zontal, vertical, and diagonal) to minimize the number of 56

reshuffles when items arrive randomly at the storage area. 57

They extended the analysis given in [7] concluding that 58

the diagonal stacking strategy results in fewer reshuffles. 59

In their experiments, horizontal stacking yielded the best 60

performance but was sensitive to every factor studied. 61

The following related works deal with uncertainty. Kim 62

et al. [17] distinguished three groups of items corresponding 63

to retrieval priorities and assumed that the group of incoming 64

items is not known in advance. They described a dynamic 65

programming model based on the probability of the group 66

of the next arriving item, to minimize the expected number 67

of reshuffles. Zhang et al. [25] showed that the previous 68

model contained an error and gave a correction. Kang et al. 69

[14] solved a similar problem by simulated annealing, where 70

the probability distribution of retrieval of items is available 71

from past statistics. Olsen and Gross [21] gave an online 72

heuristic to use as few stacks as possible with hard stacking 73

constraints, assuming that the stacking restrictions of the next 74

incoming items are unknown. Goerigk et al. [11] tackled a ro- 75

bust loading problem under stacking and payload constraints, 76

where the item weights are subject to uncertainty. Exact 77

and heuristic approaches were developed. Le and Knust [18] 78

aimed at minimizing the number of used stacks under uncer- 79

tain stacking constraints and proposed several formulations 80

as mixed-integer programs. 81

Although much research has been made on optimizing 82

stacking problems, loading problems have still attracted little 83

attention in the literature [19]. Hard stacking constraints and 84

stack height limits occur frequently in real-world applications 85

such as container terminals. To the best of our knowledge, the 86

loading problem including the latter constraints has not been 87

extensively studied. 88

b: Organization 89

In Section II, we provide our formal description of the prob- 90

lem, and we study the properties. Section III provides a math- 91

ematical model. Section IV describes a heuristic framework 92

and its variants for solving the problem. Experimental results 93

are discussed in Section V. Finally, Section VI concludes this 94

paper. 95

II. PROBLEM DESCRIPTION 96

The problem investigated in this paper is named as Stack 97

Loading Problem (SLP). A sequence of incoming items has 98

to be put in a given order in the storage area arranged 99

as stacks. The objective is to reduce the unloading effort 100

afterward, by minimizing the number of blocking items with 101

respect to their retrieval order while satisfying the stacking 102

constraints. In this section, we give a formal definition. 103

a: Definitions 104

Let I = {1, . . . , n} be a set of items, M = {1, . . . ,m} 105

be a set of stacks defining the storage area. Each stack can 106

store at most b items. The set of items is partitioned into two 107

subsets Ifix and I in. Ifix is the set of initial items indexed 108

2 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

from 1 to |Ifix| and placed beforehand in the storage area.1

I in is the set of incoming items indexed from |Ifix| + 1 to n.2

When unspecified, we consider that Ifix = ∅ and I in = I3

by default. The position of each initial item is represented4

by a coordinate (k, h), where k is the stack index and h the5

position of the item in stack k (e.g. h = 0 for bottommost6

items). We index initial items in a stack in increasing order of7

their position h. We also define an array kfix whose element8

kfix
i represents the stack of item i. Thus, the order of initial9

items in a stack is implicitly defined from their item indices.10

Incoming items arrive at the storage area one after another,11

in increasing order of their indices. So the ingoing sequence12

of items is (1,2,. . . ,n). In addition, reshuffles are forbidden.13

Thus, an item i will never be put above another item j if14

i < j. Besides, we need additional constraints to determine15

whether item i can be put above item j when i > j. We16

define two n × n binary matrices (rij) and (sij) expressing17

respectively soft and hard stacking constraints as follows:18

rij =

{
1 if item i will be retrieved after item j

0 otherwise
19

sij =

{
1 if item i can be stacked above item j

0 otherwise
20

Then the binary matrix (rij) describes also the outgoing21

order of items. A pair of items may verify rij = rji = 0,22

e.g. if they have equal retrieval times. In this case, these23

items can be retrieved in any order and are not blocking24

each other. Soft and hard stacking constraints may define25

a total order when the matrices are built by comparison of26

times, weights, or sizes. For example, a commonly used hard27

stacking constraint is that larger and/or heavier items cannot28

be put above smaller and/or lighter ones. Stacking constraints29

induced by specific item conflicts may lead to an arbitrary30

structure. For example, items containing hazardous contents31

may not be stacked together or may not be stackable with32

some other items. Note that our constraints apply regardless33

of whether items are vertically adjacent or not. When sij = 0,34

item i cannot be put above item j in the same stack even35

if items i and j are not adjacent. Moreover, since reshuffles36

are forbidden, if item i arrives after item j, sij = 0 ensures37

that items i and j are located in different stacks. Table 1

TABLE 1: Problem input

I Set of items: {1, . . . , n}
M Set of stacks: {1, . . . ,m}
b Maximum stack capacity
kfix Stack positions of initial items
(rij) Soft stacking constraints
(sij) Hard stacking constraints

38

summarizes the necessary input. Loading an incoming item39

to a stack is called a placement. Moving an existing item from40

a stack to another is called a reshuffle and is not allowed at41

loading time. An item i is said to be blocking if it is stacked42

above another item j for which rij = 1.43

b: Assumptions 44

SLP has the following assumptions. 45

A1: There are m stacks of capacity b. 46

A2: An initial configuration (could be empty) is known in 47

advance. 48

A3: Items in a stack are accessed in the last-in-first-out order. 49

A4: Items can only be put on top of a stack that can be either 50

already loaded or empty. 51

A5: Incoming items have to be put to the stacks in the order 52

of their arrival, which is indicated by their index. 53

A6: No item leaves the storage area at loading time. 54

A7: Items are subject to hard stacking constraints (sij). 55

A8: Reshuffles are forbidden at loading time. 56

c: Objective 57

The motivation of our work is to reduce the number of 58

reshuffles at retrieval (unloading) time. However, we choose 59

a surrogate objective function, minimizing the number of 60

blocking items, for the following reasons. First, evaluating 61

the exact minimum number of reshuffles may be very time- 62

consuming on large instances, since it requires to solve a 63

Blocks Relocation Problem, which is NP-hard [5]. Second, 64

the number of blocking items is a valid lower bound on 65

the number of required reshuffles. Indeed, every blocking 66

item is to be reshuffled at least once. Finally, the expected 67

minimum number of reshuffles converges to the expected 68

number of blocking items, as shown in [10]. Note that given 69

an arbitrary configuration, a methodology was proposed in 70

[16] to estimate the expected number of reshuffles, but we 71

cannot use it since it assumes that the retrieval order of items 72

is unknown. In SLP, the objective is to minimize BI , the 73

number of blocking items in the final configuration. Note that 74

BI was proposed in [15, 8, 22], referred to as the number of 75

overstows or shifts. 76

Apart from BI , USadj can also be considered as a surrogate 77

objective function for minimizing the number of reshuffles. 78

USadj counts every pair of adjacent items for which the upper 79

item blocks the lower one [2]. Figure 1 shows an arbitrary

1 2

1

2

3

4

5

6

7

8

(a) BI = 3

1 2

1

2

3

4

5

6

7

8

(b) USadj = 2

FIGURE 1: A stack configuration where BI and USadj have
different values

80

configuration where items are numbered by their retrieval 81

time and shaded items represent blocking items. Item 4 is 82

blocking both items 2 and 3. Items 7 and 8 are blocking item 83

6. In this example, the two objective functions have different 84

values. Since item 7 is not adjacent to item 6, this is not 85

counted in USadj, even if item 7 requires a reshuffle. Both BI 86

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and USadj give a lower bound on the number of reshuffles, but1

the former is stronger than the latter. This example illustrates2

the relevance of choosing BI as our objective function.3

d: Solution representation4

A solution of SLP is expressed as a sequence of stacks5

(k1, . . . , kq) where kj is the stack in which the jth incoming6

item is placed. Thus, a feasible solution of SLP consists of7

any assignment of items to stacks satisfying the maximum8

stack height (b) and hard stacking constraints (sij).9

1 2 3

1

5,8
2

4,4

3

6,2
4

1,5
5

7,7

6

8,1
7

3,6

8

2,3

FIGURE 2: An optimal solution of SLP

e: Example10

We consider a small instance with n = 8 items and m = 311

stacks of capacity b = 3. Each item i is associated with a12

retrieval time di and a weight wi. The retrieval times are de-13

fined by the vector d = (5, 4, 6, 1, 7, 8, 3, 2) and the weights14

by w = (8, 4, 2, 5, 7, 1, 6, 3), both ordered with respect to the15

item indices. We define for every pair (i, j) ∈ I2, rij = 116

if di > dj , 0 otherwise. Moreover, we assume that a heavier17

item cannot be put above a lighter one. Consequently, we set18

sij = 1 if wi ≤ wj , 0 otherwise. Figure 2 shows an optimal19

solution for SLP with BI = 2. On each item, the smaller20

number in the upper-left corner shows the index of the item.21

The left and right numbers are respectively the retrieval time22

and the weight. Shadowed items represent blocking items in23

the final configuration. An optimal solution for this instance24

of SLP is (1, 2, 2, 1, 3, 2, 3, 3).25

f: Conflict graphs26

1

2

3
4

5

6

7
8

(a) s-conflict graph

1

2

3
4

5

6

7
8

(b) rs-conflict graph

FIGURE 3: Conflict graphs (numbers are item indices)

One can visually represent hard stacking constraints of27

SLP as an undirected graph Gs = (V,Es) called s-conflict28

graph. The latter is constructed as follows. A vertex is created29

in V for each item in I . Without loss of generality, assume 30

that i < j. Two distinct vertices i and j are adjacent if items 31

i and j cannot be placed in the same stack, i.e. sji = 0. 32

Similarly, we construct a r-conflict graph, where vertices 33

i and j are adjacent if rji = 0. We also introduce the 34

undirected graph Grs = (V,Ers) called rs-conflict graph, 35

where two vertices i and j are adjacent in Grs if their corre- 36

sponding items cannot be stacked together (sji = 0), or one 37

is going to block the other if put in the same stack (rji = 1). 38

Figure 3 illustrates a s-conflict graph and a rs-conflict graph 39

built from the previous example. Such representations are 40

helpful for the implementation of the algorithm presented in 41

Section IV to compute the degree of the nodes. 42

Lemma II.1. SLP is strongly NP-hard. 43

SLP without hard stacking constraints has been proven 44

strongly NP-hard in [1]. Using the latter fact, the proof for 45

Lemma II.1 is trivial. 46

Lemma II.2. LetC be the largest clique inGs. If the number 47

of stacks m < |C|, then SLP is infeasible. 48

Proof. Suppose that C = {i1, . . . , im+1} of size m + 1. By 49

definition of Gs = (V,Es), for any pair (i`, i`′) ∈ Es, items 50

i` and i`′ cannot be stacked together. Therefore, the m + 1 51

items contained in C must be placed in distinct stacks. As 52

we have only m stacks, one item cannot be placed without 53

violating stacking constraints. 54

Given the s-conflict graph from Figure 3, the size of the 55

largest clique is 3. Thus, our example requires at least 3 56

stacks to admit a feasible solution. Note that the largest clique 57

can be found in polynomial time on perfect graphs [12]. 58

When hard stacking constraints are defined by comparison of 59

weights, they produce a comparability graph, which is also a 60

perfect graph. 61

Lemma II.3. Let C be a clique in Grs containing |C| > m 62

vertices. Then |C| − m is a lower bound on the number of 63

blocking items. 64

Proof. Consider a clique C of Grs of size greater than 65

m. Without loss of generality, we assume that i < j. By 66

definition of Grs, any pair (i, j) of items belonging to C 67

are incompatible, i.e. cannot be stacked together (sji = 0), 68

or one must block the other when put in the same stack 69

(rji = 1). Any subset S ⊆ C put in the same stack, either 70

is infeasible (at least one pair satisfies sji = 0), or causes 71

at least |S| − 1 blocking items (all the items in S except the 72

bottommost one must be blocking). Suppose that a partition 73

of C = {S1, S2, . . . , Sm} exists such that every subset Sk 74

is feasible. Then the number of blocking items is at least 75∑m
k=1(|Sk| − 1) = |C| −m. 76

Given the rs-conflict graph from Figure 3, one can observe 77

a clique of size 5, composed of items 2, 3, 4, 5, and 6. 78

Thus, a lower bound on BI is 5 − 3 = 2. Lemma II.3 can 79

be generalized by considering multiple independent largest 80

cliques instead of one. 81

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Lemma II.4. Let C1, C2, . . . , Cq be q cliques in Grs, such1

that ∀u ∈ {1, . . . , q}, |Cu| > m, and ∀v ∈ {1, . . . , q} \ {u},2

Cu ∩ Cv = ∅. Then
∑q

u=1 |Cu| − qm is a lower bound on3

the number of blocking items.4

Proof. From Lemma II.3, we know that for each u ∈5

{1, . . . , q}, |Cu| − m is a lower bound on the number6

of blocking items. All cliques Cu are independent, they7

do not share any item in common. Therefore, the sum8 ∑q
u=1 (|Cu| −m) is a lower bound on the number of block-9

ing items.10

III. MATHEMATICAL MODEL11

In this section, we present a 0-1 linear programming model
for SLP. In some contexts such as container terminals, the
decision-maker may require a way to stack containers, i.e.
a sequence of placements, even if there exists no feasi-
ble solution. To do so, we propose a model allowing hard
constraint violations in the case of infeasibility. However,
whereas this model gives a solution even in the case of
infeasibility, the optimal solutions are preserved when the
instance is feasible. An item i is said to be violating if it
is stacked above another item j such that sij = 0. When
an instance is infeasible, solving the model SLP results in a
sequence of moves minimizing the number of violating items
first, then the number of blocking items. The proposed model,
called SLP, is defined by equations (1)–(7) and includes the
following binary variables:

xik =

{
1 if item i is located in stack k
0 otherwise

yi =

{
1 if item i is a violating item
0 otherwise

zi =

{
1 if item i is a blocking item
0 otherwise

a: SLP12

min
∑
i∈I

zi + n
∑
i∈I

yi (1)

s.t.∑
k∈M

xik = 1 ∀i ∈ I (2)∑
i∈I

xik ≤ b ∀k ∈M (3)

xik + xjk ≤ 1 + zi (4)
∀i ∈ I, j ∈ I, k ∈M : i > j, sij = 1, rij = 1

xik + xjk ≤ 1 + yi (5)
∀i ∈ I, j ∈ I, k ∈M : i > j, sij = 0

xik ∈ {0, 1} ∀i ∈ I, k ∈M (6)
yi, zi ≥ 0 ∀i ∈ I (7)

The objective is to minimize the number of violating items13

first, then the number of blocking items. Since the latter is14

upper-bounded by n − m when n ≥ m (bottommost items 15

are non-blocking), multiplying the former by n guarantees 16

that the number of violating items is minimized in priority. 17

The purpose of this additional objective is to penalize infea- 18

sibility. Thus, a feasible solution will always dominate any 19

solution having violating items. Note that to forbid returning 20

a configuration in case of infeasibility, one can force yi = 0. 21

Constraint (2) ensures that each item belongs to exactly one 22

stack. Constraint (3) guarantees that the number of items in 23

a stack does not exceed the maximum capacity b. Constraint 24

(4) enforces zi = 1 if the item i is blocking another item 25

j. Constraint (5) ensures that hard stacking restrictions are 26

satisfied or enforces yi = 1 if item i is a violating item. 27

Variables yi and zi can be set as continuous since they are 28

minimized and bounded by binary variables. The number of 29

variables ismn+2n and the number of constraints is at most 30

n +m +mn2. In case Ifix = ∅, we can enforce xik = 0 for 31

each i > k to reduce the search space. Indeed, when there are 32

several empty stacks, there is no difference in choosing one 33

or another of them since they are equivalent choices. When 34

Ifix 6= ∅, the values of xik are enforced for all i ∈ Ifix and 35

k ∈M , i.e. xik = 1 if k = kfix
i , xik = 0 otherwise. 36

Since reshuffles are not allowed at loading time, items are 37

stacked by their order of arrival, so the ordering is implicitly 38

defined by item indices. In particular, if items i and j are in 39

the same stack, then item i is located above item j if i > j. 40

IV. HEURISTIC FRAMEWORK 41

In this section, we define the framework for solving SLP. This 42

is an iterative method, where each iteration consists of two 43

phases: a construction phase and an improvement phase. This 44

intuitive design, illustrated by Algorithm 1, is commonly 45

proposed in metaheuristics, such as GRASP [9]. Our method 46

generalizes the method presented in [15] and the First Fit 47

rule from [2] by using a sorting rule, a parameterizable rule 48

and taking into account hard stacking constraints as well 49

as a maximum stack height. It terminates when a stopping 50

criterion is met, such as a maximum number of iterations N 51

or a time limit. 52

Algorithm 1: Framework

s∗ ← ∅
while stopping criterion not met do

s← Construct()
if s is feasible then

s← Improve(s)
if s∗ = ∅ or BI(s) < BI(s∗) then

s∗ ← s

return s∗

A. CONSTRUCTION PHASE 53

The construction phase, formalized in Algorithm 2, builds a 54

feasible solution for SLP in two steps: a sorting step and a 55

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

selection step. First, incoming items are sorted by a specified1

criterion to determine in which order we assign them to2

stacks. Second, we select a stack for each item, one after3

another, according to a given rule. Moreover, if there is no4

feasible stack available for a given item, we attempt to repair5

the solution by moving incompatible items. Consequently,

Algorithm 2: Construct

si ← ∅, ∀i ∈ I
J ← Sort(I)
foreach i ∈ J do

k ← Select(i,s)
if k = ∅ then

k ← Repair(i,s)

si ← k

return s

6

the solution is not necessarily built in the so-called first-7

in last-out manner, where items are assigned to stacks in8

the order of arrival. Figure 4 illustrates how to assign items9

to stacks in an arbitrary order while respecting the validity10

of the configuration. In this example, six items numbered11

by arrival time have already been assigned to stacks by the12

construction algorithm. To respect the arrival order, the next13

items must be located above items arriving earlier and below14

items arriving later. Thus, the only candidate locations for15

item 4 are the red insertion points shown in Figure 4. Note16

that when there exists more than one empty stack, only the17

one with the lowest index is considered as a candidate and18

others are ignored.19

Our algorithm can easily take into account the case20

Ifix 6= ∅ by setting in advance all the values of si where21

i ∈ {1, . . . , |Ifix|} i.e. are already placed items. Then in the22

following steps, the latter values of si must be fixed.23

1 2 3 4 5

1
2

3

4

5
6 8

?

FIGURE 4: Insertion points (numbers are arrival times)

1) Sorting step24

The order of items can heavily impact the decisions made25

during the selection step. In this paper, we study three differ-26

ent orders:27

• LIFO: by increasing arrival time28

• FIFO: by decreasing arrival time29

• DEG: by decreasing degree in the conflict graphs30

The LIFO order is equivalent to the common last-in first-out31

construction. The FIFO order is equivalent to the first-in first-32

out construction, i.e. appending every next item at the bottom33

of the stacks, like in a queue. The idea behind the DEG order 34

is to increase the chance of obtaining a feasible solution by 35

treating the most conflicting items first. To do so, we order the 36

items by decreasing degree in the s-conflict graph (described 37

in Section II). Items that have the same degree in the latter 38

graph are ordered by decreasing degrees in the r-conflict 39

graph. When two items have the same degree in both graphs, 40

we choose first the one with the earliest arrival time. 41

1 2 3

1

0 0

(a) FIRST

1 2 3

0.33 0.33 0.33

(b) UNIFORM

1 2 3

0.57

0.29
0.14

(c) GEO (q = 0.5)

FIGURE 5: Selection probabilities

2) Selection step 42

During the selection step, we assign a stack to each item, 43

one after another, according to a specified rule. Note that the 44

latter rule must select a feasible stack, i.e. satisfying hard 45

stacking and maximum stack height constraints. We study 46

three rules based on the same principle: select a feasible stack 47

in such a way that the number of additional blocking items is 48

minimized. Such a stack is called a candidate stack. Though, 49

there may be several candidate stacks. Assume that set of 50

candidate stacks C is arranged from left to right, the leftmost 51

having the index 1 and the rightmost having the index |C|. To 52

break ties, we propose these three selection rules illustrated 53

in Figure 5: 54

• FIRST: always choose the leftmost stack. This is identi- 55

cal to the First Fit rule from [2]. 56

• UNIFORM: choose a stack randomly with equal proba- 57

bilities (discrete uniform distribution). 58

• GEO: choose a stack randomly with decreasing proba- 59

bilities from leftmost stack to rightmost stack. To do so, 60

we define a geometric distribution with finite support. 61

The purpose of GEO is to provide a tradeoff between FIRST
and UNIFORM to control the randomness of the selection
while selecting leftmost stacks in priority. SinceC has a finite
size, we define a geometric distribution with finite support
as follows. Let q ∈ [0, 1] be a user-defined parameter, the
probability of selecting ` ∈ C is:

P(X = `) = pq`−1 ∀` ∈ C (8)

To obtain a valid probability distribution, we need to
define:

p =
1− q

1− q|C|

The value of q determines how the selection probability de- 62

creases from a stack to its right neighbor. When q gets closer 63

to 0, then the chances to select the leftmost stacks are higher. 64

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Inversely, when q gets closer to 1, the probability distribution1

is closer to a uniform distribution. For the particular cases2

q = 0 and q = 1, we assume that GEO is equivalent to FIRST3

and UNIFORM, respectively.4

The efficiency of the construction phase is crucial since5

it may significantly impact the overall computational time.6

Indeed, solutions that are far from a local optimum may7

require a significant effort during the improvement phase.8

3) Repair mechanism9

In some cases, the selection step fails, because every stack is10

full or contains at least one incompatible item. Our algorithm11

solves this issue by running a repair mechanism. The goal12

of the Repair function (in Algorithm 2) is to make a stack13

available for item i by moving items causing infeasibility.14

Let i be the current item to assign. For each stack k, we15

get the set of items Ii(k) incompatible with i. Next, we try16

to move items of Ii(k) altogether in every feasible stack17

` 6= k. We select the stack leading to the minimum number18

of blocking items. In case of ties, we select the leftmost19

stack. When all feasible pairs (k, `) have been enumerated,20

the Repair function chooses the first pair (k∗, `∗) having21

the minimum number of blocking items and blocked items,22

lexicographically. Finally, items of Ii(k∗) are moved to stack23

`∗, so item i can be assigned to stack k∗.24

B. IMPROVEMENT PHASE25

A feasible solution obtained from the construction phase26

might be further improved by local search. This procedure27

starts from a given solution s and attempts to move to a neigh-28

bor solution iteratively. The neighborhood N(s) determines29

the search space reachable from s. In this paper, we define30

N(s) as the set of feasible solutions that can be obtained by31

applying a k-reassignment (k ≥ 1) on s, i.e. a reassignment32

of k distinct items to different stacks. When there exists33

no reassignment able to improve the solution, then it is a34

local optimum. Kim et al. [15] suggested two neighborhoods,35

denoted by one-opt and exchange in this paper.36

A one-opt search attempts to apply a 1-reassignment in37

such a way that the number of blocking items BI is reduced.38

To do so, it explores all the feasible 1-reassignments and39

chooses the one that results in the best improvement. Among40

several equal best candidates, the stack is randomly selected41

with equal probabilities.42

We extend this one-opt search by considering an additional43

objective: the number of blocked items bi . Then BI and bi44

are minimized lexicographically. When two reassignments45

result in the same value of BI , the one with the smallest bi46

is preferred. In addition, a solution is considered as a local47

optimum only when neither BI nor bi can be improved. This48

extended version of one-opt is called one-opt+.49

Similarly, a two-opt search attempts to apply improving50

2-reassignments. In this paper, the 2-reassignments are not51

limited to exchanges of items. For example, a first item52

located in the stack k may be reassigned to a stack `, and53

a second item located in the stack ` may be reassigned to a54

stack `′ 6= k. The extended version of two-opt considering bi 55

as a secondary objective is denoted by two-opt+. 56

An exchange search is a restricted version of two-opt that 57

only attempts to swap items. We denote it by exchange+ 58

when considering bi as a secondary objective. 59

All the above search procedures break ties by random 60

selection with equal probabilities. 61

Algorithm 3: Local search

repeat
s← One-opt(s)
if no improvement then

s← Two-opt(s)

until no improvement
return s

The local search procedure described in Algorithm 3 ap- 62

plies one-opt until no more improvement is found. In this 63

case, it attempts to perform a two-opt search. If an improve- 64

ment is found, it retries to perform a one-opt search again, 65

and so on. The algorithm stops when the current solution 66

cannot be improved by either one-opt or two-opt. 67

C. IMPLEMENTATION 68

In practice, a naive implementation of the local search leads 69

to significantly higher computational times than necessary. 70

We identified two ways to reduce effort without missing 71

solutions: 72

• Skip redundant 2-reassignments. 73

• Store additional information with the current solution. 74

1) Skipping redundant 2-reassignments 75

During the two-opt search, it is not necessary to check all 76

the 2-reassignments. Indeed, it is easy to see that one 2- 77

reassignment equivalent to two improving 1-reassignments 78

can be skipped since such a reassignment should be found 79

during a one-opt search. In fact, only the 2-reassignments in 80

which items share common (origin or destination) stacks are 81

non-redundant. 82

Let s be the current solution where si denotes the stack 83

assigned to item i. Let i1 and i2 be a pair of distinct items 84

to be reassigned to stacks k1 and k2 respectively. We assume 85

k1 6= si1 and k2 6= si2 . A 2-reassignment {(i1, k1), (i2, k2)} 86

is said non-redundant if it satisfies at least one of these 87

equations: 88

• si1 = si2 (same origin) 89

• k1 = k2 (same destination) 90

• k2 = si1 (destination of i2 = origin of i1) 91

• k1 = si2 (destination of i1 = origin of i2) 92

Whereas a naive two-opt search would explore up to (m−1)2 93

choices for each pair (i1, i2), the number of non-redundant 94

choices can be significantly smaller. Lemma IV.1 shows that 95

non-redundant 2-reassignments for a given pair of items can 96

be explored in linear time by the two-opt search. 97

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Lemma IV.1. When si1 6= si2 , the number of non-redundant1

2-reassignments of items i1 and i2 is at most 3m− 5.2

Proof. There exist a total of m − 1 destination stacks k1 for3

item i1, since an item is not reassigned to its origin stack.4

Then we distinguish two cases. If k1 = si2 (the destination5

of i1 is the origin of i2), then there are m− 1 non-redundant6

possibilities for k2. Otherwise, if k1 6= si2 , there exist m− 27

possibilities for k1, and only two non-redundant possibilities8

for k2: either k2 = k1 or k2 = si1 . Therefore, the number9

of non-redundant moves is 1 × (m − 1) + (m − 2) × 2 =10

3m− 5.11

Algorithm 4: Remove an item i from a stack k
J ← {j ∈ I|(i > j and sij = 1 and rij = 1) or
(i < j and sji = 1 and rji = 1)}

foreach j ∈ J: Sj = k do
if i > j then

ui ← ui − 1
vj ← vj − 1
if ui = 0 then

BI← BI− 1

if vj = 0 then
bi← bi− 1

else
uj ← uj − 1
vi ← vi − 1
if uj = 0 then

BI← BI− 1

if vi = 0 then
bi← bi− 1

2) Storing additional information12

The number of blocking items in a solution (k1, . . . , kn),13

without any additional information, can be evaluated in14

O(n2) iterations. Since the number of evaluations may be15

large during the local search, it may be convenient to evaluate16

a solution in O(1) iterations. So we suggest to store BI17

and bi as variables as well as two vectors u and v of size18

n. We denote by ui the number of items blocked by item19

i, and vi the number of items blocking item i. For each20

item placement or reassignment, BI , bi , u and v need to21

be updated. This requires O(n) iterations (instead of O(1)22

previously), as shown in Algorithms 4 and 5. In our imple-23

mentation, we observed empirically that the number of item24

placements/reassignments was approximately twice the num-25

ber of evaluations, considering one-opt and two-opt searches.26

However, the overall complexity is still significantly reduced27

since the solutions are now evaluated in O(1) instead of28

O(n2).29

V. EXPERIMENTAL RESULTS30

Algorithm 5: Insert an item i in a stack k
J ← {j ∈ I|(i > j and sij = 1 and rij = 1) or
(i < j and sji = 1 and rji = 1)}

foreach j ∈ J: Sj = k do
if i > j then

if ui = 0 then
BI← BI + 1

if vj = 0 then
bi← bi + 1

ui ← ui + 1
vj ← vj + 1

else
if uj = 0 then

BI← BI + 1

if vi = 0 then
bi← bi + 1

uj ← uj + 1
vi ← vi + 1

A. PRELIMINARY ANALYSIS 31

For a preliminary experiment, it is interesting to see how 32

the number of items and the number of stacks of random 33

instances can influence computational times. In order to 34

obtain a landscape of random instances, we generated the 35

heatmap of Figure 6 as follows. Given a number of items 36

n and a number of stacks m, we generated 20 instances 37

on the fly with retrieval times and weights defined as a 38

random permutation in {1, . . . , n}, and no maximum stack 39

height. The SLP model was run on these instances with 40

0 50 100 150 200 250
0

50

100

150

200

250

Number of items

N
um

be
ro

fs
ta

ck
s

FIGURE 6: Heatmap of computational times

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

CPLEX 12.9.0 configured with a time limit of 5 seconds.1

This process has been done for all n ∈ {4, . . . , 250} and2

m ∈ {3, . . . , n − 1}. In Figure 6, the color of each pixel3

represents the total computational time obtained for the 204

instances corresponding to a given (n,m) pair. A white5

pixel means that the computational time was close to zero,6

whereas a black pixel means that the time limit of 5 seconds7

was reached for all the 20 instances. The heatmap suggests8

that almost all the instances above the red line of Equation9

n = 3m were trivial. Indeed, a larger number of stacks10

allows smaller stacks and therefore a smaller probability of11

having blocking items and violating stacking constraints. On12

the other hand, finding a feasible solution is likely to be more13

difficult for instances having fewer stacks.14

B. METHODOLOGY15

We performed our next experiments on instances from two16

data sets.17

The first data set (random) is made of randomly gener-18

ated instances. The random dataset is itself split into two19

subsets: (T) instances having stacking constraints following20

a total order, and (A) instances having an arbitrary struc-21

ture. We generated instances with n ∈ {100, 200} items,22

m ∈ {25, 30, 35} stacks for n = 100 and m ∈ {50, 55, 60}23

stacks for n = 200; b = 5 and Ifix = ∅. Note that24

these parameters were chosen to cover the gap between easy25

and hard instances according to the heatmap of Figure 6,26

while avoiding infeasible instances. We created 10 instances27

for a selection of combinations of parameters, totalizing28

120 instances, as follows. In (T) instances, each item i is29

associated with a retrieval time di ∈ {1, . . . , n} and a weight30

wi ∈ {1, . . . , n} randomly permutated in {1, . . . , n}. The31

retrieval order (rij) is defined by rij = 1 if di > dj , 032

otherwise. Hard constraints (sij) are defined by sij = 133

if wi ≤ wj , 0 otherwise. In (A) instances, (rij) and (sij)34

are randomly generated matrices where each cell is either35

0 or 1 with both probabilities of 1
2 . Note that setting sij to36

1 with a probability close to 1 would lead in significantly37

easier instances. On the other hand, a probability close to 038

would make instances infeasible most of the time. Similarly,39

too homogeneous rij values may not be relevant. Thus, we40

choose a probability of 1
2 as a reasonable tradeoff.41

The second data set (real) was produced from the real42

data courtesy of a port in Asia. The port’s yard is organized43

into independent sets of stacks called blocks, each is served44

by one gantry crane. For compatibility reasons, we selected45

blocks that hosted more than 96 % of containers of the same46

size (either 20′ or 40′) for the experiments, since the case47

where both 20′ and 40′ containers are stored in the same48

block is not supported by our models. For each selected49

block, we obtained historical data covering one year and a50

half, which includes arrival times, retrieval times, weights,51

and the chosen stack. The whole period was partitioned into52

alternating loading and unloading sessions, in which only53

consecutive arrivals or retrievals occurred, respectively. After54

each session, items remaining in the stacks become the initial55

items of the next session. Taking the configuration of the 56

previous retrieval session as inputs, each loading session is 57

solved by the models to find the optimal configuration, and 58

the process goes on. The sizes of the instances (in terms of the 59

number of incoming items) are grouped by range in Table 2. 60

TABLE 2: Size of instances in each block (real dataset)

nin A45 A7 A8 B8 Total

1–9 713 545 512 1,025 2,795
10–49 191 247 182 346 966
50–99 35 25 21 24 105
100+ 6 1 1 2 10

Total 945 818 716 1,397 3,876

The SLP model was implemented with the CPLEX C++ 61

library version 12.9.0. The heuristic algorithms were imple- 62

mented in C++. The real dataset and the random dataset with 63

(T) and (A) instances were executed on a processor Intel Core 64

i3-8121U with 8 GB RAM under Linux Ubuntu 20.04. In 65

CPLEX, the time limit was set to 3600 seconds per instance. 66

C. HEURISTIC FRAMEWORK RESULTS 67

We first focus on the results of the heuristic framework on the 68

random data set. For the sake of clarity, we treat the FIRST 69

and UNIFORM selection rules as special cases of GEO with 70

the parameter q = 0 and q = 1 respectively. For each variant, 71

we ran 2000 iterations with different random seeds and saved 72

the solution at each iteration. We analyze the impact of the 73

sorting rule, the value of q, the repair mechanism, and the 74

local search. 75

a: Sorting rule 76

The feasibility rate defines the percentage of iterations for 77

which a feasible solution was found. Table 3 compares 78

the feasibility rate among the sorting rules with the repair 79

mechanism enabled and different values of the parameter 80

q, for all random datasets. We observe that the DEG order 81

always obtains a 100 % feasibility rate, regardless of the 82

value of q, whereas LIFO and FIFO reach a 95 % feasibility 83

rate in the best case. This suggests that treating the most 84

conflicting items in priority decreases the chance of being 85

stuck during the construction phase. We suppose that the 86

most conflicting items are likely to require empty or nearly 87

empty stacks at placement to avoid infeasibility. If one of 88

these items is treated later, then more stacks may be occupied 89

by incompatible items, reducing the number of candidate 90

stacks. Since the feasibility rates of LIFO and FIFO are below 91

our requirements, we adopt DEG as the sorting rule in the 92

following part. 93

TABLE 3: Feasibility rate (in %), repair enabled

q = 1.0 0.5 0.2 0.15 0.1 0.05 0.0

LIFO 91.9 93.5 94.8 95 95.1 95.1 95
FIFO 91.7 92.8 93.8 94 94.2 94.5 95
DEG 100 100 100 100 100 100 100

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 20 40 60 80 100
3

4

5

6

Iterations

E
xp

ec
te

d
ob

je
ct

iv
e

va
lu

e

q = 0.5
q = 0.2
q = 0.15
q = 0.1
q = 0.05
q = 0.0

FIGURE 7: Average expected objective value with two-opt+

0 20 40 60 80 100

4

6

8

10

Iterations

E
xp

ec
te

d
ob

je
ct

iv
e

va
lu

e

none
one-opt

one-opt+
exchange

exchange+
two-opt

two-opt+

FIGURE 8: Average expected objective value with q = 0.1

0 0.2 0.4 0.6 0.8 1
4

6

8

10

Time (s)

E
xp

ec
te

d
ob

je
ct

iv
e

va
lu

e

none
one-opt

one-opt+
exchange

exchange+
two-opt

two-opt+

FIGURE 9: Average expected objective value over time with
q = 0.1 (until 300 iterations)

TABLE 4: Average objective value at N = 1 iteration

q = 0.5 0.2 0.15 0.1 0.05 0.0

none 15.3 11.75 11.15 10.53 9.92 9.19
one-opt 13.39 10.56 10.08 9.58 9.05 8.39
one-opt+ 11.65 9.53 9.15 8.74 8.33 7.75
exchange 12.41 10.03 9.6 9.14 8.65 7.96
exchange+ 10.5 8.81 8.47 8.12 7.74 7.19
two-opt 8.12 7.16 6.96 6.76 6.54 6.32
two-opt+ 6.13 5.7 5.6 5.49 5.38 5.3

TABLE 5: Average expected objective value at N = 100
iterations

q = 0.5 0.2 0.15 0.1 0.05 0.0

none 9.65 7.32 7.06 6.86 6.86 9.19
one-opt 8.25 6.53 6.37 6.2 6.2 8.35
one-opt+ 6.96 5.78 5.64 5.56 5.55 7.28
exchange 7.59 6.17 6.02 5.91 5.91 7.9
exchange+ 6.15 5.29 5.19 5.09 5.09 6.61
two-opt 4.83 4.41 4.35 4.34 4.4 5.85
two-opt+ 3.59 3.45 3.45 3.46 3.51 4.3

TABLE 6: Average computational time of N = 100 itera-
tions (in seconds)

q = 0.5 0.2 0.15 0.1 0.05 0.0

none 0.1 0.1 0.1 0.1 0.1 0.1
one-opt 0.2 0.2 0.1 0.1 0.1 0.1
one-opt+ 0.5 0.4 0.3 0.3 0.3 0.3
exchange 0.4 0.2 0.2 0.2 0.2 0.2
exchange+ 0.7 0.4 0.4 0.4 0.4 0.3
two-opt 40.3 23.1 20.5 17.9 15.4 12.2
two-opt+ 31.4 20.8 19 17.2 15.3 12.5

b: Value of q 1

Assuming that the stopping criterion is a limit ofN iterations, 2

we compute the expected average objective value denoted by 3

EN . The method to compute EN is described in Appendix 4

A. Tables 4 and 5 show the average expected objective value 5

at N = 1 and N = 100 iteration(s) respectively, according 6

to the local search and the parameter q. Figure 7 shows 7

the evolution of the average expected objective value with a 8

two-opt+ local search. We observe that the most deterministic 9

version (q = 0) of our algorithm finds better solutions from 10

the first iterations, but it is not able to improve further the 11

objective value because of a lack of diversity in the search 12

space. On the other hand, a more randomized version slows 13

down the convergence but may reach solutions of better 14

quality after a very large number of iterations, as suggested 15

by the promising trajectory of the curve with q = 0.5. 16

Therefore, we suggest setting the value of q according to the 17

computational time limits of the decision-maker. 18

c: Repair mechanism 19

We analyze the impact of the repair mechanism on the ability 20

to find feasible solutions, assuming q = 0.1. Without the 21

repair mechanism, LIFO, FIFO, and DEG failed to find 22

at least one feasible solution on respectively 35, 37, and 23

4 instances. The feasibility rates are respectively 49.6 %, 24

10 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 7: Results for n = 100
Sorting rule: DEG, local search: 2-opt+, q = 0.1

BI

CPLEX Time (s)

Inst. n m LB 10m 1h H CPLEX H

A01 100 25 0 12 4 4.7 >3, 600 6.9
A02 100 25 0 14 5 5.0 >3, 600 7.1
A03 100 25 0 12 4 4.1 >3, 600 7.1
A04 100 25 0 8 5 4.1 >3, 600 6.5
A05 100 25 0 7 6 3.4 >3, 600 5.4
A06 100 25 0 11 5 4.3 >3, 600 7.2
A07 100 25 0 11 4 4.9 >3, 600 6.4
A08 100 25 0 12 12 4.2 >3, 600 5.3
A09 100 25 0 9 5 3.8 >3, 600 5.4
A10 100 25 0 12 6 3.6 >3, 600 7.2

A11 100 30 0 0 0 0.0 360.0 0.7
A12 100 30 0 0 0 0.0 367.3 0.9
A13 100 30 0 0 0 0.0 61.9 0.6
A14 100 30 0 0 0 0.0 25.9 0.7
A15 100 30 0 0 0 0.0 442.7 1.7
A16 100 30 0 0 0 0.0 332.2 0.5
A17 100 30 0 0 0 0.0 272.8 0.8
A18 100 30 0 0 0 0.0 260.8 1.5
A19 100 30 0 0 0 0.0 281.8 0.6
A20 100 30 0 0 0 0.0 513.4 1.0

A21 100 35 0 0 0 0.0 <0.1 <0.1
A22 100 35 0 0 0 0.0 <0.1 <0.1
A23 100 35 0 0 0 0.0 <0.1 <0.1
A24 100 35 0 0 0 0.0 <0.1 <0.1
A25 100 35 0 0 0 0.0 <0.1 <0.1
A26 100 35 0 0 0 0.0 <0.1 <0.1
A27 100 35 0 0 0 0.0 <0.1 <0.1
A28 100 35 0 0 0 0.0 <0.1 <0.1
A29 100 35 0 0 0 0.0 <0.1 <0.1
A30 100 35 0 0 0 0.0 <0.1 <0.1

T01 100 25 14 25 24 19.6 >3, 600 13.7
T02 100 25 6 13 10 11.7 >3, 600 8.9
T03 100 25 9 14 9 10.2 >3, 600 4.4
T04 100 25 14 39 26 22.3 >3, 600 12.9
T05 100 25 8 14 14 11.7 >3, 600 7.5
T06 100 25 12 18 16 17.2 >3, 600 11.3
T07 100 25 11 19 13 13.8 >3, 600 9.8
T08 100 25 10 20 14 13.8 >3, 600 8.1
T09 100 25 11 16 14 14.7 >3, 600 6.7
T10 100 25 8 18 11 11.9 >3, 600 10.2

T11 100 30 8 11 8 9.3 >3, 600 9.6
T12 100 30 1 3 1 2.0 >3, 600 3.1
T13 100 30 12 15 12 13.4 >3, 600 14.3
T14 100 30 6 8 6 6.0 >3, 600 6.1
T15 100 30 3 4 3 3.7 >3, 600 5.8
T16 100 30 7 10 7 7.1 >3, 600 5.3
T17 100 30 2 4 2 2.3 >3, 600 2.7
T18 100 30 6 7 6 6.7 >3, 600 6.4
T19 100 30 1 2 1 2.1 >3, 600 3.9
T20 100 30 1 5 1 2.4 >3, 600 4.2

T21 100 35 1 2 1 1.0 >3, 600 2.3
T22 100 35 1 1 1 1.0 >3, 600 2.3
T23 100 35 0 0 0 0.0 <0.1 1.2
T24 100 35 2 5 2 2.5 >3, 600 1.8
T25 100 35 0 2 0 0.1 1,084.7 1.3
T26 100 35 2 6 2 3.0 >3, 600 6.8
T27 100 35 0 0 0 0.0 <0.1 0.3
T28 100 35 0 0 0 0.0 <0.1 <0.1
T29 100 35 2 2 2 2.3 2,146.6 4.9
T30 100 35 0 0 0 0.0 <0.1 0.2

TABLE 8: Results for n = 200
Sorting rule: DEG, local search: 2-opt+, q = 0.1

BI

CPLEX Time (s)

Inst. n m LB 10m 1h H CPLEX H

A31 200 50 0 16 16 0.0 >3, 600 25.5
A32 200 50 0 15 15 0.0 >3, 600 29.6
A33 200 50 0 17 17 0.1 >3, 600 31.4
A34 200 50 0 16 16 0.0 >3, 600 27.1
A35 200 50 0 25 25 0.0 >3, 600 23.2
A36 200 50 0 22 22 0.0 >3, 600 27.4
A37 200 50 0 16 16 0.2 >3, 600 32.3
A38 200 50 0 16 16 0.2 >3, 600 33.4
A39 200 50 0 24 24 0.1 >3, 600 29.9
A40 200 50 0 21 21 0.1 >3, 600 29.2

A41 200 55 0 0 0 0.0 27.2 2.5
A42 200 55 0 4 0 0.0 1,667.2 1.7
A43 200 55 0 0 0 0.0 0.1 1.6
A44 200 55 0 7 0 0.0 1,681.2 2.4
A45 200 55 0 0 0 0.0 0.1 3.2
A46 200 55 0 3 0 0.0 1,893.6 3.0
A47 200 55 0 5 0 0.0 1,359.1 2.1
A48 200 55 0 7 0 0.0 2,215.7 3.5
A49 200 55 0 2 2 0.0 >3, 600 3.8
A50 200 55 0 11 9 0.0 >3, 600 2.3

A51 200 60 0 0 0 0.0 0.1 <0.1
A52 200 60 0 0 0 0.0 0.1 <0.1
A53 200 60 0 0 0 0.0 0.1 <0.1
A54 200 60 0 0 0 0.0 0.1 <0.1
A55 200 60 0 0 0 0.0 0.1 <0.1
A56 200 60 0 0 0 0.0 0.1 <0.1
A57 200 60 0 0 0 0.0 0.1 <0.1
A58 200 60 0 0 0 0.0 0.1 <0.1
A59 200 60 0 0 0 0.0 0.1 0.1
A60 200 60 0 0 0 0.0 0.1 0.1

T31 200 50 5 27 27 9.6 >3, 600 82.5
T32 200 50 12 45 45 19.3 >3, 600 174.2
T33 200 50 5 24 24 9.9 >3, 600 74.5
T34 200 50 4 25 25 6.5 >3, 600 54.2
T35 200 50 0 20 20 3.6 >3, 600 40.1
T36 200 50 8 29 29 10.6 >3, 600 82.0
T37 200 50 4 24 24 6.7 >3, 600 85.4
T38 200 50 7 35 35 9.2 >3, 600 76.5
T39 200 50 5 28 28 8.5 >3, 600 87.5
T40 200 50 0 24 24 3.8 >3, 600 38.3

T41 200 55 1 22 22 2.2 >3, 600 24.1
T42 200 55 7 29 29 12.0 >3, 600 79.6
T43 200 55 0 20 18 0.8 >3, 600 31.5
T44 200 55 3 19 19 5.1 >3, 600 56.1
T45 200 55 1 22 22 4.0 >3, 600 39.0
T46 200 55 3 20 20 5.4 >3, 600 51.0
T47 200 55 4 14 14 6.7 >3, 600 72.9
T48 200 55 5 27 25 8.6 >3, 600 54.8
T49 200 55 2 19 18 3.0 >3, 600 28.1
T50 200 55 10 28 27 10.4 >3, 600 73.4

T51 200 60 0 0 0 0.0 0.1 4.0
T52 200 60 0 17 17 1.7 >3, 600 25.7
T53 200 60 0 12 11 0.7 >3, 600 31.0
T54 200 60 3 20 18 3.8 >3, 600 35.5
T55 200 60 0 0 0 0.0 0.1 1.9
T56 200 60 2 17 16 3.5 >3, 600 21.2
T57 200 60 0 20 18 2.1 >3, 600 33.2
T58 200 60 0 0 0 0.0 0.1 6.6
T59 200 60 0 0 0 0.0 0.1 3.3
T60 200 60 1 11 11 3.0 >3, 600 28.8

VOLUME 4, 2016 11

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 9: Average computational time of N = 100 iterations with DEG and q = 0.1 (in seconds)

n m none one-opt one-opt+ exchange exchange+ two-opt two-opt+

100 25 <0.1 <0.1 0.1 0.1 0.2 6.2 7.9
100 30 <0.1 <0.1 0.1 <0.1 0.1 3.5 3.5
100 35 <0.1 <0.1 <0.1 <0.1 <0.1 1.3 1.1
200 50 0.1 0.2 0.7 0.5 0.9 53.6 54.2
200 55 0.1 0.2 0.6 0.3 0.6 30.3 26.8
200 60 0.1 0.2 0.3 0.2 0.3 12.8 9.6

47.4 %, and 92.9 %, suggesting that DEG is significantly1

more reliable for finding feasible solutions. With the repair2

mechanism, LIFO, FIFO, and DEG failed on respectively 1,3

1, and 0 instances. These results show that the relevance of4

repairing infeasible solutions and confirm our choice of DEG5

as our default sorting rule.6

d: Local search7

Assuming q = 0.1, Figure 8 compares the evolution of8

the average expected objective value according to the local9

search depth. Applying a two-opt+ local search reduced by10

at least 47 % the number of blocking items on average com-11

pared to no local search, regardless of the iteration between12

1 and 100. Compared to exchange+, two-opt+ reduced by13

32 % the number of blocking items. We also observe that the14

extended versions of the local searches reduced significantly15

the blocking items compared to the basic versions.16

Although each iteration of two-opt+ was on average 4317

times slower than exchange+ (as shown in Table 6), two-opt+18

outperformed all the other local searches after a few itera-19

tions, as shown in Figure 9. Nevertheless, the latter result may20

significantly vary depending on the implementation details.21

We observe that the computational time increases as the22

value of q increases. We focus on the runs where two-opt+23

was enabled. When q = 0, the average number of one-opt24

operations per iteration was 5.7, whereas it was 7.9 when25

q = 0.2, and 11.2 when q = 0.5. The average number of26

two-opt operations per iteration was respectively 2.7, 4.1, and27

5.6. It means that when the value of q is greater, the chances28

that the constructed solution is far from a local optimum are29

greater, then the local search required more computational30

time.31

Table 9 gives more detailed average computational times32

with q = 0.1, according to the number of items and the33

number of stacks. We observe a significant gap between34

instances having less than n
3 stacks and the others. This gap35

and the one observed around the red line in the heatmap of 36

Figure 6 suggest the existence of a clear shortage between 37

easy and hard instances. 38

D. SLP MODEL RESULTS 39

In the following part, we adopt DEG, q = 0.1, two-opt+ 40

and N = 100 iterations as the default parameter set of 41

our heuristic framework for a comparison with the CPLEX 42

performance on the SLP model. In Tables 7 and 8, the column 43

LB shows the lower bounds computed using the Lemma 44

II.4. We used a modified Bron-Kerbosch algorithm [3] to 45

iteratively search for largest cliques in Grs. The column 46

BI reports the objective value of CPLEX obtained after 10 47

minutes (10m) and after 1 hour (1h), as well as the expected 48

objective value of our heuristic (H). The last two columns 49

show the computational times of CPLEX and our heuristic. 50

These results highlight again that the computation times of 51

the SLP model on CPLEX are not necessarily related to 52

the overall size of the instance, but the ratio between the 53

number of items and the number of stacks. Indeed, most of 54

the instances having high n
m ratios reached the time limit with 55

CPLEX, whereas instances having low n
m ratios were more 56

often solved in 0.1 seconds. We observe discrepancies in 57

computational times for instances T21 to T30, and instances 58

T51 to T60. Some instances were solved to optimality in 0.1 59

seconds, whereas the rest reached at least 1,000 seconds. This 60

large gap suggests that instances having the same n and m 61

values could be split into two distinct classes of difficulty. 62

E. APPLICATION TO THE REAL DATA SET 63

Table 10 shows the performance of SLP model on the real 64

data set. The column #inst shows the total numbers of in- 65

stances for each block of the port. The columns n and Time 66

show the total number of items and the total computational 67

time respectively. The columns BI and V show the number 68

of blocking items and the number of violating items, respec- 69

TABLE 10: Results of the SLP model and the heuristic framework on the real dataset

Block #inst. n m b
BI V Time (s)

Port CPLEX H Port CPLEX H CPLEX H

A7 818 7670 54 4 2933 57 71 3601 13 13 61.4 8.2
A8 716 6765 54 4 2417 5 6 2684 1 1 2.5 1.6
A45 945 8835 66 5 3702 148 146 3842 26 25 19.0 9.5
B8 1397 11986 130 4 6951 71 156 6187 9 4 3103.8 184.4

Total 3876 35256 16003 281 379 16314 49 43 3186.6 203.7
(%) 45 % 0.8 % 1.1 % 46.3 % 0.1 % 0.1 %

12 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

tively, split into three subcolumns showing the number of1

blocking/violating items obtained by the current practice of2

the port, CPLEX, and the heuristic framework (H). The last3

line in Table 10 expresses the percentage of blocking items.4

The SLP model (on CPLEX) found the optimal solution5

in less than 10 seconds in almost all instances except for6

three instances in blocks A7 and B8. However, in both cases,7

CPLEX was able to find a feasible solution in a few seconds.8

In comparison to current practice in the port, the SLP model9

is able to reduce the number of blocking items from 45 % to10

0.8 %, the number of violating items from 46 % to 0.1 %, and11

the number of mixed blocking/violating items from 62.6 % to12

0.9 %.13

VI. CONCLUSION14

In this paper, we tackled a Stack Loading Problem (SLP).15

We also proved a sufficient condition of infeasibility that can16

be checked in polynomial time. In addition to the theoretical17

studies, we proposed a mathematical model. We provided a18

flexible heuristic framework with several variants in order19

to analyze them. The experiments showed that the heuristic20

framework with certain parameters was competitive com-21

pared to a commercial solver such as CPLEX. Experiments22

with CPLEX have shown that our SLP model was able to23

solve most of the tested real cases in less than 10 seconds.24

In this work, we assumed that the retrieval times were25

all known in advance. However, this assumption may not26

be applicable in some contexts. In our container terminal,27

the retrieval time was unknown for approximatively 10 % of28

the containers at loading time. One can use the average stay29

time as a default value, but it might lead to solutions lacking30

robustness. Taking into account this uncertainty based on past31

statistics is a perspective of our future work. In container32

terminals, a storage area might accept simultaneously 20’33

and 40’ containers. Therefore, another perspective is to solve34

the problem that allows stacking containers of different sizes35

(e.g. two 20’ containers on top of a single 40’ container or the36

opposite). We also consider designing exact methods for the37

most difficult instances of SLP, in which n > 3m. Another38

future research we consider is to find tighter lower bounds.39

.40

APPENDIX A EXPECTED OBJECTIVE VALUE41

To compute the average objective value obtained at N itera-42

tions, one way is to perform a large number of runs, with a43

stopping criterion of N iterations. However, this experiment44

might be very long. Instead, we exploit the fact that iterations45

are independent. Running a large number of single iterations46

results in a distribution of objective values illustrated in Fig-47

ure 10. It shows which objective values were obtained with48

their respective probabilities. Using this data, we compute the49

expected objective value at N iterations.50

Given a number N of iterations, an algorithm A and51

an instance I, the expected objective value is computed as52

follows. Let X1, X2, . . . , XN be random variables following53

identical discrete probability distributions, each of them rep-54

2 3 4 5
0

0.2

0.4

0.6

0.8

1

0.2

0.4
0.3

0.1

Objective value

Pr
ob

ab
ili

ty

FIGURE 10: A distribution of objective values

resenting the objective value obtained by one iteration. Let 55

X = {x1, . . . , xk} be the set of all the possible outcomes 56

of Xi ordered by increasing values, and P = {p1, . . . , pk} 57

their respective probabilities. Let Y = min(X1, . . . , XN) 58

the minimum objective value among all the N iterations. 59

The expected objective value at N iterations is defined by:

E(Y) =

k∑
i=1

xiP(Y = xi)

Given an outcome xi ∈ X ,

P(Y = xi) = P(Y ≥ xi)− P(Y ≥ xi+1)

P(Y ≥ xi) = P(X1 ≥ xi, . . . , Xk ≥ xi) =
N∏
j=1

P(Xj ≥ xi)

The random variables are identical and independent:

P(Y ≥ xi) = (P(X1 ≥ x))N

The values of xi are ordered by increasing values, then we
have P(X1 ≥ xi) =

∑k
j=i pj and:

P(Y ≥ xi) =

 k∑
j=i

pj

N

Consequently:

P(Y = xi) =

 k∑
j=i

pj

N

−

 k∑
j=i+1

pj

N

Finally, the expected objective value at N iterations is
defined by:

E(Y) =

k∑
i=1

xi


 k∑

j=i

pj

N

−

 k∑
j=i+1

pj

N


In the example of Figure 10, the expected objective value 60

at 10 iterations is: 61

VOLUME 4, 2016 13

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

2× (110 − 0.810) + 3× (0.810 − 0.410)

+ 4× (0.410 − 0.110) + 5× (0.110 − 010) = 2.10748

ACKNOWLEDGEMENTS1

This research is supported by Newton Institutional Links2

grant no. 172734213 by the UK BEIS. We thank Mario3

Garza-Fabre for his very helpful remarks.4

REFERENCES5

[1] Sven Boge and Sigrid Knust. The parallel stack load-6

ing problem minimizing the number of reshuffles in7

the retrieval stage. European Journal of Operational8

Research, 280(3):940 – 952, 2020. ISSN 0377-2217.9

. URL http://www.sciencedirect.com/science/article/10

pii/S0377221719306587.11

[2] Nils Boysen and Simon Emde. The parallel stack load-12

ing problem to minimize blockages. European Journal13

of Operational Research, 249(2):618–627, mar 2016. .14

URL https://doi.org/10.1016%2Fj.ejor.2015.09.033.15

[3] Coen Bron and Joep Kerbosch. Algorithm 457: finding16

all cliques of an undirected graph. Communications of17

the ACM, 16(9):575–577, sep 1973. . URL https://doi.18

org/10.1145%2F362342.362367.19

[4] Florian Bruns, Sigrid Knust, and Natalia V. Shakhle-20

vich. Complexity results for storage loading problems21

with stacking constraints. European Journal of Opera-22

tional Research, 249(3):1074–1081, mar 2016. . URL23

https://doi.org/10.1016%2Fj.ejor.2015.09.036.24

[5] Marco Caserta, Silvia Schwarze, and Stefan Voß. A25

mathematical formulation and complexity considera-26

tions for the blocks relocation problem. European Jour-27

nal of Operational Research, 219(1):96–104, may 2012.28

. URL https://doi.org/10.1016%2Fj.ejor.2011.12.039.29

[6] James Castonguay. International shipping: Globaliza-30

tion in crisis. Witness (online magazine), page 4,31

2009. URL http://www.visionproject.org/images/img_32

magazine/pdfs/international_shipping.pdf.33

[7] Lu Chen and Zhiqiang Lu. The storage location as-34

signment problem for outbound containers in a mar-35

itime terminal. International Journal of Production36

Economics, 135(1):73–80, jan 2012. . URL https:37

//doi.org/10.1016%2Fj.ijpe.2010.09.019.38

[8] Alberto Delgado, Rune Møller Jensen, Kira Janstrup,39

Trine Høyer Rose, and Kent Høj Andersen. A con-40

straint programming model for fast optimal stowage41

of container vessel bays. European Journal of Oper-42

ational Research, 220(1):251–261, jul 2012. . URL43

https://doi.org/10.1016%2Fj.ejor.2012.01.028.44

[9] Thomas A. Feo and Mauricio G. C. Resende. Greedy45

randomized adaptive search procedures. Journal of46

Global Optimization, 6(2):109–133, mar 1995. . URL47

https://doi.org/10.1007%2Fbf01096763.48

[10] V. Galle, S. Borjian Boroujeni, V.H. Manshadi, C. Barn-49

hart, and P. Jaillet. An average-case asymptotic anal-50

ysis of the container relocation problem. Operations 51

Research Letters, 44(6):723–728, nov 2016. . URL 52

https://doi.org/10.1016%2Fj.orl.2016.08.006. 53

[11] Marc Goerigk, Sigrid Knust, and Xuan Thanh Le. 54

Robust storage loading problems with stacking and 55

payload constraints. European Journal of Operational 56

Research, 253(1):51–67, aug 2016. . URL https: 57

//doi.org/10.1016%2Fj.ejor.2016.02.019. 58

[12] M. Grötschel, L. Lovász, and A. Schrijver. The el- 59

lipsoid method and its consequences in combinatorial 60

optimization. Combinatorica, 1(2):169–197, jun 1981. 61

. URL https://doi.org/10.1007%2Fbf02579273. 62

[13] Roberto Guerra-Olivares, Neale R. Smith, Rosa G. 63

González-Ramírez, and Leopoldo Eduardo Cárdenas- 64

Barrón. A study of the sensitivity of sequence stacking 65

strategies for the storage location assignment prob- 66

lem for out-bound containers in a maritime termi- 67

nal. International Journal of System Assurance Engi- 68

neering and Management, 9(5):1057–1062, Oct 2018. 69

ISSN 0976-4348. . URL https://doi.org/10.1007/ 70

s13198-018-0733-x. 71

[14] Jaeho Kang, Kwang Ryel Ryu, and Kap Hwan Kim. 72

Deriving stacking strategies for export containers with 73

uncertain weight information. Journal of Intelligent 74

Manufacturing, 17(4):399–410, aug 2006. . URL 75

https://doi.org/10.1007%2Fs10845-005-0013-x. 76

[15] Byung-In Kim, Jeongin Koo, and Hotkar Parshuram 77

Sambhajirao. A simplified steel plate stacking problem. 78

International Journal of Production Research, 49(17): 79

5133–5151, sep 2011. . URL https://doi.org/10.1080% 80

2F00207543.2010.518998. 81

[16] Kap Hwan Kim. Evaluation of the number of re- 82

handles in container yards. Computers & Industrial 83

Engineering, 32(4):701–711, sep 1997. . URL https: 84

//doi.org/10.1016%2Fs0360-8352%2897%2900024-7. 85

[17] Kap Hwan Kim, Young Man Park, and Kwang-Ryul 86

Ryu. Deriving decision rules to locate export containers 87

in container yards. European Journal of Operational 88

Research, 124(1):89–101, jul 2000. . URL https: 89

//doi.org/10.1016%2Fs0377-2217%2899%2900116-2. 90

[18] Xuan Thanh Le and Sigrid Knust. MIP-based ap- 91

proaches for robust storage loading problems with 92

stacking constraints. Computers & Operations Re- 93

search, 78:138–153, feb 2017. . URL https://doi.org/ 94

10.1016%2Fj.cor.2016.08.016. 95

[19] Jana Lehnfeld and Sigrid Knust. Loading, unloading 96

and premarshalling of stacks in storage areas: Survey 97

and classification. European Journal of Operational 98

Research, 239(2):297–312, dec 2014. . URL https: 99

//doi.org/10.1016%2Fj.ejor.2014.03.011. 100

[20] Northport (Malaysia) BHD. Tariff https://www. 101

northport.com.my/npv2/containerservices.html, 2017. 102

URL http://www.northport.com.my/npv2/tariff_ccd% 103

20edit%20(final%2011.09.15)(2).pdf. 104

[21] Martin Olsen and Allan Gross. Probabilistic analysis of 105

online stacking algorithms. In Lecture Notes in Com- 106

14 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

puter Science, pages 358–369. Springer Nature, 2015. .1

URL https://doi.org/10.1007%2F978-3-319-24264-4_2

25.3

[22] Francisco Parreño, Dario Pacino, and Ramon Alvarez-4

Valdes. A GRASP algorithm for the container stowage5

slot planning problem. Transportation Research Part E:6

Logistics and Transportation Review, 94:141–157, oct7

2016. . URL https://doi.org/10.1016%2Fj.tre.2016.07.8

011.9

[23] Port of Portland. Terminal tariff no. 810

https://www2.portofportland.com/Marine/Tariff, 2017.11

URL https://popcdn.azureedge.net/pdfs/Marine%12

20Tariff%20No.%208%202017.pdf.13

[24] The Mersey Docks and Horbour Company. Schedule14

of common user charges liverpool container terminals15

https://www.peelports.com/ports/liverpool, 2017.16

URL https://www.peelports.com/media/2317/17

2017-liverpool-container-terminals-charges.pdf.18

[25] Canrong Zhang, Weiwei Chen, Leyuan Shi, and19

Li Zheng. A note on deriving decision rules to locate20

export containers in container yards. European Journal21

of Operational Research, 205(2):483–485, sep 2010. .22

URL https://doi.org/10.1016%2Fj.ejor.2009.12.016.23

CHARLY LERSTEAU received the B.Sc and24

M.Sc degrees in Computer Science and Opera-25

tional Research from the University of Nantes,26

France, in 2013 and the Ph.D. degree in computer27

science from the University of South Brittany,28

France, in 2016. From 2017 to 2019, he was a29

Research Fellow at Liverpool John Moores Uni-30

versity, UK. Since 2019, he is a Research Fellow at31

Huazhong University of Science and Technology,32

in Wuhan, China.33

His research interests span algorithms, graph theory, linear programming,34

metaheuristics, large-scale optimization, complexity theory. He has been35

involved in multiple projects with applications in military, maritime, and36

logistics domains, including one funded by DfT about rail transportation. His37

experience covers solving a range of optimization problems such as wireless38

sensor networks, facility location, container stacking, and vehicle routing39

problems.40

TRUNG T. NGUYEN is a Reader in Operational41

Research (OR), Liverpool John Moores Univer-42

sity and the co-director of the Liverpool Offshore43

and Marine Research Institute. He has an interna-44

tional standing in operational research for logis-45

tics/transport. He has led over 20 research projects46

in transport/logistics, most with close industry47

collaborations. He has published about 50 peer-48

reviewed papers. All of his journal papers are in49

leading journals (ranked 1st - 20th in their fields).50

He co-organized six leading conferences, was TPC member of more than51

30 international conferences, edited eight books and gave speeches to many52

conferences/events.53

TRI T. LE received the M.Sc degree in Infor- 54

mation Technology in Department of Information 55

Technology, Military Technical Academy (Le Qui 56

Don Technical University), Hanoi, Vietnam, in 57

2010 and Bachelor of Information Technology at 58

Faculty of Information Technology, Vietnam Mar- 59

itime University, Haiphong, Vietnam, in 2004. He 60

is currently pursuing the Ph.D. degree in mechan- 61

ical engineering at VNU University of Science, 62

Hanoi, Vietnam. From September 2016 to August 63

2017, he was a researcher in Liverpool John Moores University, Liverpool, 64

UK. His research interests are optimization and simulation of maritime, 65

transport and logistics problems. 66

HA N. NGUYEN (M’76) received his B.Sc in 67

Information Technology from VNU-Hanoi Uni- 68

versity of Science and Technology in 1998, M.Sc 69

in Computer Science from Chungwoon University, 70

Korea in 2003, and Ph.D. in Software Applications 71

from Korea Aerospace University, Korea in 2007. 72

From 2007 to 2017, he worked for Department 73

of Information Systems in the University of En- 74

gineering and Technology as a Senior Lecturer in 75

Data Mining, Statistical Machine Learning, and 76

Database. He is currently serving as Vice president of Information Technol- 77

ogy Institute (ITI), Vietnam National University in Hanoi (VNU) since 2017. 78

He is interested in financial risk analysis, behavior analysis, developing 79

information systems and maritime logistics/transport using techniques from 80

data analysis, modeling, and software engineering. 81

WEIMING SHEN (M’98–SM’02–F’12) received 82

his Bachelor and Master’s degrees from Northern 83

(Beijing) Jiaotong University, China (in 1983 and 84

1986 respectively) and his Ph.D. degree from the 85

University of Technology of Compiègne, France 86

(in 1996). He is currently a Professor at Huazhong 87

University of Science and Technology (HUST), 88

China, and an Adjunct Professor at the Univer- 89

sity of Western Ontario, Canada. Prior to joining 90

HUST, he was a Principal Research Officer at Na- 91

tional Research Council Canada. His research interest includes collaborative 92

intelligent technologies and systems, and their applications in industry. He 93

is a Fellow of IEEE, a Fellow of the Canadian Academy of Engineering, a 94

Fellow of the Engineering Institute of Canada, and a licensed Professional 95

Engineer in Ontario, Canada. 96

97

98

VOLUME 4, 2016 15

