38 research outputs found

    Mapping patient pathways and understanding clinical decision-making in dengue management to inform the development of digital health tools

    Get PDF
    Background Dengue is a common viral illness and severe disease results in life-threatening complications. Healthcare services in low- and middle-income countries treat the majority of dengue cases worldwide. However, the clinical decision-making processes which result in effective treatment are poorly characterised within this setting. In order to improve clinical care through interventions relating to digital clinical decision-support systems (CDSS), we set out to establish a framework for clinical decision-making in dengue management to inform implementation. Methods We utilised process mapping and task analysis methods to characterise existing dengue management at the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. This is a tertiary referral hospital which manages approximately 30,000 patients with dengue each year, accepting referrals from Ho Chi Minh city and the surrounding catchment area. Initial findings were expanded through semi-structured interviews with clinicians in order to understand clinical reasoning and cognitive factors in detail. A grounded theory was used for coding and emergent themes were developed through iterative discussions with clinician-researchers. Results Key clinical decision-making points were identified: (i) at the initial patient evaluation for dengue diagnosis to decide on hospital admission and the provision of fluid/blood product therapy, (ii) in those patients who develop severe disease or other complications, (iii) at the point of recurrent shock in balancing the need for fluid therapy with complications of volume overload. From interviews the following themes were identified: prioritising clinical diagnosis and evaluation over existing diagnostics, the role of dengue guidelines published by the Ministry of Health, the impact of seasonality and caseload on decision-making strategies, and the potential role of digital decision-support and disease scoring tools. Conclusions The study highlights the contemporary priorities in delivering clinical care to patients with dengue in an endemic setting. Key decision-making processes and the sources of information that were of the greatest utility were identified. These findings serve as a foundation for future clinical interventions and improvements in healthcare. Understanding the decision-making process in greater detail also allows for development and implementation of CDSS which are suited to the local context

    Complete genome characterization of two wild-type measles viruses from Vietnamese infants during the 2014 outbreak

    Get PDF
    A large measles virus outbreak occurred across Vietnam in 2014. We identified and obtained complete measles virus genomes in stool samples collected from two diarrheal pediatric patients in Dong Thap Province. These are the first complete genome sequences of circulating measles viruses in Vietnam during the 2014 measles outbreak

    Genome sequences of a novel Vietnamese bat bunyavirus

    Get PDF
    To document the viral zoonotic risks in Vietnam, fecal samples were systematically collected from a number of mammals in southern Vietnam and subjected to agnostic deep sequencing. We describe here novel Vietnamese bunyavirus sequences detected in bat feces. The complete L and S segments from 14 viruses were determined

    Impact of comorbid conditions on asthmatic adults and children

    Get PDF
    Comorbid conditions (comorbidities) can complicate the diagnosis and management of asthma. In different age groups, comorbid conditions can present varying challenges, including diagnostic confusion due to mimicking asthma symptoms, exacerbation of asthma symptoms, therapy for comorbid conditions affecting asthma or therapy for asthma affecting these conditions. This review aims to summarise some common comorbid conditions with asthma, such as rhinitis, vocal cord dysfunction, gastro-oesophageal reflux, psychiatric disorders, obesity and obstructive sleep apnoea, and discuss their prevalence, symptoms, diagnosis and treatment, highlighting any differences in how they impact children and adults. Overall, there is a lack of data on the impact of treating comorbid conditions on asthma outcomes and further studies are needed to guide age-appropriate asthma management in the presence of these conditions.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.A.K. reports personal fees from AstraZeneca, Behring, Boehringer Ingelheim, GlaxoSmithKline, Griffols, Teva, Novartis, Novo Nordisk, Paladdin, Pfizer, Purdue, Sanofi and Trudel, outside the submitted work. D.M.G.H. reports personal fees from AstraZeneca, Chiesi and Pfizer and grants and personal fees from Boehringer Ingelheim, GlaxoSmithKline and Novartis, outside the submitted work. S.J.S. reports fees from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Propeller Health, Regeneron and Sanofi, outside the submitted work all paid to the University of Colorado School of Medicinepublished version, accepted version, submitted versio

    Genetic profiling and individualized prognosis of fracture

    Full text link
    Fragility fracture is a serious public health problem in the world. The risk of fracture is determined by genetic and nongenetic clinical risk factors. This study sought to quantify the contribution of genetic profiling to fracture prognosis. The study was built on the ongoing Dubbo Osteoporosis Epidemiology Study, in which fracture and risk factors of 858 men and 1358 women had been monitored continuously from 1989 and 2008. Fragility fracture was ascertained by radiologic reports. Bone mineral density at the femoral neck was measured by dual-energy X-ray absorptiometry (DXA). Fifty independent genes with allele frequencies ranging from 0.01 to 0.60 and relative risks (RRs) ranging from 1.01 to 3.0 were simulated. Three predictive models were fitted to the data in which fracture was a function of (1) clinical risk factors only, (2) genes only, and (3) clinical risk factors and 50 genes. The area under the curve (AUC) for model 1 was 0.77, which was lower than that of model II (AUC=0.82). Adding genes into the clinical risk factors model (model 3) increased the AUC to 0.88 and improved the accuracy of fracture classification by 45%, with most (41%) improvement in specificity. In the presence of clinical risk factors, the number of genes required to achieve an AUC of 0.85 was around 25. These results suggest that genetic profiling could enhance the predictive accuracy of fracture prognosis and help to identify high-risk individuals for appropriate management of osteoporosis or intervention. © 2011 American Society for Bone and Mineral Research
    corecore