176 research outputs found

    Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues

    Full text link
    © 2018 Elsevier Ltd Antibiotic wastewater has become a major concern due to the toxicity and recalcitrance of antibiotics. Anaerobic membrane bioreactors (AnMBRs) are considered alternative technology for treating antibiotic wastewater because of their advantages over the conventional anaerobic processes and aerobic MBRs. However, membrane fouling remains the most challenging issue in the AnMBRs’ operation and this limits their application. This review critically discusses: (i) antibiotics removal and antibiotic resistance genes (ARGs) in different types of AnMBRs and the impact of antibiotics on membrane fouling and (ii) the integrated AnMBRs systems for fouling control and removal of antibiotics. The presence of antibiotics in AnMBRs could aggravate membrane fouling by influencing fouling-related factors (i.e., sludge particle size, extracellular polymeric substances (EPS), soluble microbial products (SMP), and fouling-related microbial communities). Conclusively, integrated AnMBR systems can be a practical technology for antibiotic wastewater treatment

    Continuous transformation of chiral pharmaceuticals in enzymatic membrane bioreactors for advanced wastewater treatment

    Get PDF
    This study demonstrates continuous enantiomeric inversion and further biotransformation of chiral profens including ibuprofen, naproxen and ketoprofen by an enzymatic membrane bioreactor (EMBR) dosed with laccase. The EMBR showed non-enantioselective transformations, with high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6%, n = 10), but lower removals of both enantiomers of naproxen (46 ± 16%, n = 10) and ketoprofen (48 ± 17%, n = 10). Enantiomeric analysis revealed a bidirectional but uneven inversion of the profens, for example 14% inversion of (R)- to (S)- compared to 4% from (S)- to (R)-naproxen. With redox-mediator addition, the enzymatic chiral inversion of both (R)- and (S)-profens remained unchanged, although the overall conversion became enantioselective; except for (S)-naproxen, the addition of redox mediator promoted the degradation of (R)-profens only

    A new perspective on small-scale treatment systems for arsenic affected groundwater

    Full text link
    This work provides a new perspective on small-scale treatment systems to remove arsenic from groundwater for potable applications in low-income communities. Data corroborated from the literature highlight a significant challenge to providing potable water in a financially sustainable manner in arsenic affected areas. Analysis of the literature also reveals notable deficiency in the current practice, especially the overfocus on household-scale treatment systems for arsenic affected groundwater without adequate maintenance, monitoring, and a systematic cost–benefit analysis. Accurate and reliable analysis of arsenic in water samples at relevant health guideline values is costly and technologically demanding for low-income communities. Significant discrepancy in the performance of household-scale treatment systems can be attributed to the lack of maintenance and systematic monitoring. Moreover, data on the maintenance and compliance monitoring cost of small-scale arsenic treatment systems are very limited in the literature, and the available data show an exponential increase in maintenance cost per treatment capacity unit as the treatment size decreases. On the other hand, significant opportunities exist to increase performance reliability and reduce water treatment cost by taking advantage of the current digital transformation of the water sector. The analysis in this work suggests the need to reframe current practice towards commune-scale treatment systems as an interim step before centralised water supply is available

    A novel approach in crude enzyme laccase production and application in emerging contaminant bioremediation

    Get PDF
    Laccase enzyme from white-rot fungi is a potential biocatalyst for the oxidation of emerging contaminants (ECs), such as pesticides, pharmaceuticals and steroid hormones. This study aims to develop a three-step platform to treat ECs: (i) enzyme production, (ii) enzyme concentration and (iii) enzyme application. In the first step, solid culture and liquid culture were compared. The solid culture produced significantly more laccase than the liquid culture (447 vs. 74 μM/min after eight days), demonstrating that white rot fungi thrived on a solid medium. In the second step, the enzyme was concentrated 6.6 times using an ultrafiltration (UF) process, resulting in laccase activity of 2980 μM/min. No enzymatic loss due to filtration and membrane adsorption was observed, suggesting the feasibility of the UF membrane for enzyme concentration. In the third step, concentrated crude enzyme was applied in an enzymatic membrane reactor (EMR) to remove a diverse set of ECs (31 compounds in six groups). The EMR effectively removed of steroid hormones, phytoestrogen, ultraviolet (UV) filters and industrial chemical (above 90%). However, it had low removal of pesticides and pharmaceuticals

    A model immunization programme to control Japanese encephalitis in Viet Nam.

    Get PDF
    In Viet Nam, an inactivated, mouse brain-derived vaccine for Japanese encephalitis (JE) has been given exclusively to ≤ 5 years old children in 3 paediatric doses since 1997. However, JE incidence remained high, especially among children aged 5-9 years. We conducted a model JE immunization programme to assess the feasibility and impact of JE vaccine administered to 1-9 year(s) children in 3 standard-dose regimen: paediatric doses for children aged <3 years and adult doses for those aged ≥ 3 years. Of the targeted children, 96.2% were immunized with ≥ 2 doses of the vaccine. Compared to the national immunization programme, JE incidence rate declined sharply in districts with the model programme (11.32 to 0.87 per 100,000 in pre-versus post-vaccination period). The rate of reduction was most significant in the 5-9 years age-group. We recommend a policy change to include 5-9 years old children in the catch-up immunization campaign and administer a 4th dose to those aged 5-9 years, who had received 3 doses of the vaccine during the first 2-3 years of life

    A real-time RT-PCR for detection of clade 1 and 2 H5N1 Influenza A virus using Locked Nucleic Acid (LNA) TaqMan probes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence and co-circulation of two different clades (clade 1 and 2) of H5N1 influenza viruses in Vietnam necessitates the availability of a diagnostic assay that can detect both variants.</p> <p>Results</p> <p>We developed a single real-time RT-PCR assay for detection of both clades of H5N1 viruses, directly from clinical specimens, using locked nucleic acid TaqMan probes. Primers and probe used in this assay were designed based on a highly conserved region in the <it>HA </it>gene of H5N1 viruses. The analytical sensitivity of the assay was < 0.5 PFU and 10 - 100 ssDNA plasmid copies. A total of 106 clinical samples (58 from patients infected with clade 1, 2.1 or 2.3 H5N1 viruses and 48 from uninfected or seasonal influenza A virus-infected individuals) were tested by the assay. The assay showed 97% concordance with initial diagnostics for H5 influenza virus infection with a specificity of 100%.</p> <p>Conclusions</p> <p>This assay is a useful tool for diagnosis of H5N1 virus infections in regions where different genetic clades are co-circulating.</p
    • …
    corecore