489 research outputs found
Deep Autoencoder for Recommender Systems: Parameter Influence Analysis
Recommender systems have recently attracted many researchers in the deep learning community. The state-of-the-art deep neural network models used in recommender systems are multilayer perceptron and deep autoencoder (DAE). In this work, we focus on the DAE model due to its superior capability to reconstruct the inputs, which works well for recommender systems. Existing works have similar implementations of DAE but the parameter settings are vastly different for similar datasets. In this work, we have built a flexible DAE model, named FlexEncoder that uses configurable parameters and unique features to analyze the parameter influences on the prediction accuracy of recommendations. Extensive evaluation on the MovieLens datasets are conducted, which drives our conclusions on the influences of DAE parameters. We find that DAE parameters strongly affect the prediction accuracy of the recommender systems, and the effect remains valid for bigger datasets in the same family
Genetic vulnerability to diabetes and obesity: does education offset the risk?
The prevalence of type 2 diabetes (T2D) and obesity has recently increased dramatically. These common diseases are likely to arise from the interaction of multiple genetic, socio-demographic and environmental risk factors. While previous research has found genetic risk and education to be strong predictors of these diseases, few studies to date have examined their joint effects. This study investigates whether education modifies the association between genetic background and risk for type 2 diabetes (T2D) and obesity. Using data from non-Hispanic Whites in the Health and Retirement Study (HRS, n = 8398), we tested whether education modifies genetic risk for obesity and T2D, offsetting genetic effects; whether this effect is larger for individuals who have high risk for other (unobserved) reasons, i.e., at higher quantiles of HbA1c and BMI; and whether effects differ by gender. We measured T2D risk using Hemoglobin A1c (HbA1c) level, and obesity risk using body-mass index (BMI). We constructed separate genetic risk scores (GRS) for obesity and diabetes respectively based on the most current available information on the single nucleotide polymorphism (SNPs) confirmed as genome-wide significant predictors for BMI (29 SNPs) and diabetes risk (39 SNPs). Linear regression models with years of schooling indicate that the effect of genetic risk on HbA1c is smaller among people with more years of schooling and larger among those with less than a high school (HS) degree compared to HS degree-holders. Quantile regression models show that the GRS × education effect systematically increased along the HbA1c outcome distribution; for example the GRS × years of education interaction coefficient was −0.01 (95% CI = −0.03, 0.00) at the 10th percentile compared to −0.03 (95% CI = −0.07, 0.00) at the 90th percentile. These results suggest that education may be an important socioeconomic source of heterogeneity in responses to genetic vulnerability to T2D
Hydrodynamics of liquids of arbitrarily curved flux-lines and vortex loops
We derive a hydrodynamic model for a liquid of arbitrarily curved flux-lines
and vortex loops using the mapping of the vortex liquid onto a liquid of
relativistic charged quantum bosons in 2+1 dimensions recently suggested by
Tesanovic and by Sudbo and collaborators. The loops in the flux-line system
correspond to particle-antiparticle fluctuations in the bosons. We explicitly
incorporate the externally applied magnetic field which in the boson model
corresponds to a chemical potential associated with the conserved charge
density of the bosons. We propose this model as a convenient and physically
appealing starting point for studying the properties of the vortex liquid
Establishment of a Percutaneous Coronary Intervention Registry in Vietnam: Rationale and Methodology
Copyright: © 2020 The Author(s).
Background: In lower- and middle-income countries across Asia there has been a rapid expansion and uptake of percutaneous coronary intervention (PCI). However, there has been limited routine collection of related data, particularly around quality, safety and cost. The aim of this study was to assess the viability of implementing routine collection of PCI data in a registry at a leading hospital in Hanoi, Vietnam.
Method: A Vietnamese data collection form and collection strategy were developed in collaboration with the Vietnam National Heart Institute. Information on patient characteristics, treatments, and outcomes was collected through direct interviews using a standardised form and medical record abstraction, while PCI data was read and coded into paper forms by interventional cardiologists. Viability of the registry was determined by four main factors: 1) being able to collect a representative sample; 2) quality of data obtained; 3) costs and time taken for data collection by hospital staff; and 4) level of support from key stakeholders in the institute.
Results: Between September 2017 and May 2018, 1,022 patients undergoing PCI were recruited from a total of 1,041 procedures conducted during that time frame. The estimated mean time to collect information from patients before discharge was 60 minutes. Of the collected data fields, 98% were successfully completed. Most hospital staff surveyed indicated support for the continuation of the activity following the implementation of the pilot study.
Conclusions: The proposed methodology for establishing a PCI registry in a large hospital in Vietnam produced high quality data and was considered worthwhile by hospital staff. The model has the potential opportunity for replication in other cardiac catheterisation sites, leading to a national PCI registry in Vietnam
Does the COVID-19 Pandemic Disproportionately Affect the Poor? Evidence from a Six-Country Survey
The COVID-19 pandemic has wrought havocs on economies around the world. Yet, much needs to be learnt on the distributional impacts of the pandemic. We contribute new theoretical and empirical evidence on the distributional impacts of the pandemic on different income groups in a multi-country setting. Analyzing rich individual-level data from a six-country survey, we find that while the outbreak has no impacts on household income losses, it results in a 63-percent reduction in the expected own labor income for the second-poorest income quintile. The impacts of the pandemic are most noticeable in terms of savings, with all the four poorer income quintiles suffering reduced savings ranging between 5 and 7 percent compared to the richest income quintile. The poor are also less likely to change their behaviors, both in terms of immediate prevention measures against COVID-19 and healthy activities. We also find countries to exhibit heterogeneous impacts. The United Kingdom has the least household income loss and expected labor income loss, and the most savings. Japanese are least likely to adapt behavioral changes, but Chinese, Italians, and South Koreans wash their hands and wear a mask more often than Americans
Tunable resonators for quantum circuits
We have designed, fabricated and measured high-Q coplanar
waveguide microwave resonators whose resonance frequency is made tunable with
magnetic field by inserting a DC-SQUID array (including 1 or 7 SQUIDs) inside.
Their tunability range is 30% of the zero field frequency. Their quality factor
reaches up to 3. We present a model based on thermal fluctuations
that accounts for the dependance of the quality factor with magnetic field.Comment: subm. to JLTP (Proc. of LTD12 conference
Properties of layer-by-layer vector stochastic models of force fluctuations in granular materials
We attempt to describe the stress distributions of granular packings using
lattice-based layer-by-layer stochastic models that satisfy the constraints of
force and torque balance and non-tensile forces at each site. The inherent
asymmetry in the layer-by-layer approach appears to lead to an asymmetric force
distribution, in disagreement with both experiments and general symmetry
considerations. The vertical force component probability distribution is robust
and in agreement with predictions of the scalar q model while the distribution
of horizontal force components is qualitatively different and depends on the
details of implementation.Comment: 18 pages, 12 figures (with subfigures), 1 table. Uses revtex,
epsfig,subfigure, and cite. Submitted to PRE. Plots have been bitmapped.
High-resolution version is available. Email [email protected] or
download from http://rainbow.uchicago.edu/~mbnguyen/research/vm.htm
Severe anal bleeding in Proteus syndrome: a case report
Proteus syndrome was originally described by Cohen and Hayden in 1979. The disorder was named Proteus syndrome by Wiedmann and colleagues in 1983 after Proteus, the giant Greek god of the sea. Proteus syndrome is a rare, sporadic, congenital polymorphic condition. Approximately 200 cases have been reported in the literature, but none has been associated with anal bleeding from hemorrhoids. We describe the case of a 21-year-old man with Proteus syndrome with severe anal bleeding. A hemorrhoidectomy was assumed to be too risky because of the massive venous abnormalities seen on CT. The patient was successfully treated by Doppler-guided haemorrhoidal artery ligation (DG-HAL). Six months after surgery, the patient has had no further episodes of anal bleeding
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
- …