1,709 research outputs found
Short mucin 6 alleles are associated with H pylori infection
Contains fulltext :
49314.pdf (publisher's version ) (Open Access)AIM: To investigate the relationship between mucin 6 (MUC6) VNTR length and H pylori infection. METHODS: Blood samples were collected from patients visiting the Can Tho General Hospital for upper gastrointestinal endoscopy. DNA was isolated from whole blood, the repeated section was cut out using a restriction enzyme (Pvu II) and the length of the allele fragments was determined by Southern blotting. H pylori infection was diagnosed by (14)C urea breath test. For analysis, MUC6 allele fragment length was dichotomized as being either long (> 13.5 kbp) or short (< or = 13.5 kbp) and patients were classified according to genotype [long-long (LL), long-short (LS), short-short (SS)]. RESULTS: 160 patients were studied (mean age 43 years, 36% were males, 58% H pylori positive). MUC6 Pvu II-restricted allele fragment lengths ranged from 7 to 19 kbp. Of the patients with the LL, LS, SS MUC6 genotype, 43% (24/56), 57% (25/58) and 76% (11/46) were infected with H pylori, respectively (P = 0.003). CONCLUSION: Short MUC6 alleles are associated with H pylori infection
Interpretation of pre-morbid cardiac 3T MRI findings in overweight and hypertensive young adults
In young adults, overweight and hypertension possibly already trigger cardiac remodeling as seen in mature adults, potentially overlapping non-ischemic cardiomyopathy findings. To this end, in young overweight and hypertensive adults, we aimed to investigate changes in left ventricular mass (LVM) and cardiac volumes, and the impact of different body scales for indexation. We also aimed to explore the presence of myocardial fibrosis, fat and edema, and changes in cellular mass with extracellular volume (ECV), T(1) and T(2) tissue characteristics. We prospectively recruited 126 asymptomatic subjects (51% male) aged 27–41 years for 3T cardiac magnetic resonance imaging: 40 controls, 40 overweight, 17 hypertensive and 29 hypertensive overweight. Myocyte mass was calculated as (100%–ECV) * height(2.7)-indexed LVM. Absolute LVM was significantly increased in overweight, hypertensive and hypertensive overweight groups (104 ± 23, 109 ± 27, 112 ± 26 g) versus controls (87 ± 21 g), with similar volumes. Body surface area (BSA) indexation resulted in LVM normalization in overweights (48 ± 8 g/m(2)) versus controls (47 ± 9 g/m(2)), but not in hypertensives (55 ± 9 g/m(2)) and hypertensive overweights (52 ± 9 g/m(2)). BSA-indexation overly decreased volumes in overweight versus normal-weight (LV end-diastolic volume; 80 ± 14 versus 92 ± 13 ml/m(2)), where height(2.7)-indexation did not. All risk groups had lower ECV (23 ± 2%, 23 ± 2%, 23 ± 3%) than controls (25 ± 2%) (P = 0.006, P = 0.113, P = 0.039), indicating increased myocyte mass (16.9 ± 2.7, 16.5 ± 2.3, 18.1 ± 3.5 versus 14.0 ± 2.9 g/m(2.7)). Native T(1) values were similar. Lower T(2) values in the hypertensive overweight group related to heart rate. In conclusion, BSA-indexation masks hypertrophy and causes volume overcorrection in overweight subjects compared to controls, height(2.7)-indexation therefore seems advisable
Manifolds with 1/4-pinched flag curvature
We say that a nonnegatively curved manifold has quarter pinched flag
curvature if for any two planes which intersect in a line the ratio of their
sectional curvature is bounded above by 4. We show that these manifolds have
nonnegative complex sectional curvature. By combining with a theorem of Brendle
and Schoen it follows that any positively curved manifold with strictly quarter
pinched flag curvature must be a space form. This in turn generalizes a result
of Andrews and Nguyen in dimension 4. For odd dimensional manifolds we obtain
results for the case that the flag curvature is pinched with some constant
below one quarter, one of which generalizes a recent work of Petersen and Tao
Impact of gonadectomy on maturational changes in brain volume in adolescent macaques
Adolescence is a transitional period between childhood and adulthood characterized by significant changes in global and regional brain tissue volumes. It is also a period of increasing vulnerability to psychiatric illness. The relationship between these patterns and increased levels of circulating sex steroids during adolescence remains unclear. The objective of the current study was to determine whether gonadectomy, prior to puberty, alters adolescent brain development in male rhesus macaques. Ninety-six structural MRI scans were acquired from 12 male rhesus macaques (8 time points per animal over a two-year period). Six animals underwent gonadectomy and 6 animals underwent a sham operation at 29 months of age. Mixed-effects models were used to determine whether gonadectomy altered developmental trajectories of global and regional brain tissue volumes. We observed a significant effect of gonadectomy on the developmental trajectory of prefrontal gray matter (GM), with intact males showing peak volumes around 3.5 years of age with a subsequent decline. In contrast, prefrontal GM volumes continued to increase in gonadectomized males until the end of the study. We did not observe a significant effect of gonadectomy on prefrontal white matter or on any other global or regional brain tissue volumes, though we cannot rule out that effects might be detected in a larger sample. Results suggest that the prefrontal cortex is more vulnerable to gonadectomy than other brain regions
A gap-filling, regenerative implant for open-wedge osteotomy
Introduction: In patients suffering from unilateral osteoarthritis in the knee, an osteotomy can provide symptomatic relief and postpone the need for replacement of the joint. Nevertheless, open-wedge osteotomies (OWOs) around the knee joint face several challenges like postoperative pain and bone nonunion. Objectives: In this study, the aim was to design, fabricate, and evaluate a gap-filling implant for OWO using an osteoinductive and degradable biomaterial. Methods: Design of porous wedge-shaped implants was based on computed tomography scans of cadaveric legs. Implants were 3-dimensionally printed using a magnesium strontium phosphate-polycaprolactone (MgPSr-PCL) biomaterial ink. Standardized scaffolds with different inter-fiber spacing (IFS) were mechanically characterized and osteoinductive properties of the biomaterial were assessed in vitro. Finally, human-sized implants with different heights (5 mm, 10 mm, 15 mm) were designed and fabricated for ex vivo implantation during 3 OWO procedures in human cadaveric legs. Results: Implants printed with an interior of IFS-1.0 resulted in scaffolds that maintained top and bottom porosity, while the interior of the implant exhibited significant mechanical stability. Bone marrow concentrate and culture expanded mesenchymal stromal cells attached to the MgPSr-PCL material and proliferated over 21 days in culture. The production of osteogenic markers alkaline phosphatase activity, calcium, and osteocalcin was promoted in all culture conditions, independent of osteogenic induction medium. Finally, 3 OWO procedures were planned and fabricated wedges were implanted ex vivo during the procedures. A small fraction of one side of the wedges was resected to assure fit into the proximal biplanar osteotomy gap. Preplanned wedge heights were maintained after implantation as measured by micro-computed tomography. Conclusion: To conclude, personalized implants for implantation in OWOs were successfully designed and manufactured. The implant material supported osteogenesis of mesenchymal stromal cells and bone marrow concentrate in vitro and full-size implants were successfully implemented into the surgical procedure without compromising preplanned wedge height.</p
Energy Spectrum of Bloch Electrons Under Checkerboard Field Modulations
Two-dimensional Bloch electrons in a uniform magnetic field exhibit complex
energy spectrum. When static electric and magnetic modulations with a
checkerboard pattern are superimposed on the uniform magnetic field, more
structures and symmetries of the spectra are found, due to the additional
adjustable parameters from the modulations. We give a comprehensive report on
these new symmetries. We have also found an electric-modulation induced energy
gap, whose magnitude is independent of the strength of either the uniform or
the modulated magnetic field. This study is applicable to experimentally
accessible systems and is related to the investigations on frustrated
antiferromagnetism.Comment: 8 pages, 6 figures (reduced in sizes), submitted to Phys. Rev.
Accelerating lattice reduction with FPGAs
International audienceWe describe an FPGA accelerator for the Kannan–Fincke–Pohst enumeration algorithm (KFP) solving the Shortest Lattice Vector Problem (SVP). This is the first FPGA implementation of KFP specifically targeting cryptographically relevant dimensions. In order to optimize this implementation, we theoretically and experimentally study several facets of KFP, including its efficient parallelization and its underlying arithmetic. Our FPGA accelerator can be used for both solving stand-alone instances of SVP (within a hybrid CPU–FPGA compound) or myriads of smaller dimensional SVP instances arising in a BKZ-type algorithm. For devices of comparable costs, our FPGA implementation is faster than a multi-core CPU implementation by a factor around 2.12
Pocket CLARITY enables distortion-mitigated cardiac microstructural tissue characterization of large-scale specimens
Molecular phenotyping by imaging of intact tissues has been used to reveal 3D molecular and structural coherence in tissue samples using tissue clearing techniques. However, clearing and imaging of cardiac tissue remains challenging for large-scale (>100 mm(3)) specimens due to sample distortion. Thus, directly assessing tissue microstructural geometric properties confounded by distortion such as cardiac helicity has been limited. To combat sample distortion, we developed a passive CLARITY technique (Pocket CLARITY) that utilizes a permeable cotton mesh pocket to encapsulate the sample to clear large-scale cardiac swine samples with minimal tissue deformation and protein loss. Combined with light sheet auto-fluorescent and scattering microscopy, Pocket CLARITY enabled the characterization of myocardial microstructural helicity of cardiac tissue from control, heart failure, and myocardial infarction in swine. Pocket CLARITY revealed with high fidelity that transmural microstructural helicity of the heart is significantly depressed in cardiovascular disease (CVD), thereby revealing new insights at the tissue level associated with impaired cardiac function
Kinetic Arrest in Polyion-Induced Inhomogeneously-Charged Colloidal Particle Aggregation
Polymer chains adsorbed onto oppositely charged spherical colloidal particles
can significantly modify the particle-particle interactions. For sufficient
amounts of added polymers, the original electrostatic repulsion can even turn
into an effective attraction and relatively large kinetically stable aggregates
can form which display several unexpected and interesting peculiarities and
some intriguing biotechnological implications. The attractive interaction
contribution between two oppositely particles arises from the correlated
adsorption of polyions at the oppositely charged particle surfaces, resulting
in a non-homogeneous surface charge distribution. Here, we investigate the
aggregation kinetics of polyion-induced colloidal complexes through Monte Carlo
simulation, in which the effect of charge anisotropy is taken into account by a
DLVO-like intra-particle potential, as recentely proposed by Velegol and Thwar
[D. Velegol and P.K. Thwar, Langmuir, 17, 2001]. The results reveal that in the
presence of a charge heterogeneity the aggregation process slows down due to
the progressive increase of the potential barrier height upon clustering.
Within this framework, the experimentally observed cluster phases in
polyelectrolyte-liposomes solutions should be considered as a kinetic arrested
state.Comment: 9 pages. 11 figure
Current clinical practice of knee osteotomy in the Netherlands
Background: Realignment osteotomies is gaining popularity amongst Dutch orthopaedic surgeons. Exact numbers and used standards in clinical practice concerning osteotomies are unknown due to the absence of a national registry. The aim of this study was to investigate the national statistics of performed osteotomies, utilized clinical workups, surgical techniques, and post-operative rehabilitation standards in the Netherlands. Method: Dutch orthopaedic surgeons, all members of the Dutch Knee Society, received a web-based survey between January and March 2021. This electronic survey contained 36 questions, subdivided into: general surgeon-related information, number of performed osteotomies, inclusion of patients, clinical workup, surgical techniques, and post-operative management. Results: 86 orthopaedic surgeons filled in the questionnaire, of whom 60 perform realignment osteotomies around the knee. All the 60 responders (100%) perform high tibial osteotomies and 63.3% additionally perform distal femoral osteotomies, while 30% perform double level osteotomies. Discrepancies in surgical standards were reported regarding to inclusion criteria, clinical workup, surgical techniques, and post-operative strategies. Conclusions: In conclusion, this study got more insight in knee osteotomy clinical practices as applied by Dutch orthopaedic surgeons. However, there are still important discrepancies which pleads for more standardization based on available evidence. A (inter)national knee osteotomy registry, and even more so, a (inter)national registry for joint preserving surgeries could be helpful to achieve more standardization and treatment insights. Such a registry could improve all aspects of osteotomies and its combinations with other joint-preserving interventions towards evidence for personalised treatments
- …