11,513 research outputs found

    The Royal Birth of 2013: Analysing and Visualising Public Sentiment in the UK Using Twitter

    Full text link
    Analysis of information retrieved from microblogging services such as Twitter can provide valuable insight into public sentiment in a geographic region. This insight can be enriched by visualising information in its geographic context. Two underlying approaches for sentiment analysis are dictionary-based and machine learning. The former is popular for public sentiment analysis, and the latter has found limited use for aggregating public sentiment from Twitter data. The research presented in this paper aims to extend the machine learning approach for aggregating public sentiment. To this end, a framework for analysing and visualising public sentiment from a Twitter corpus is developed. A dictionary-based approach and a machine learning approach are implemented within the framework and compared using one UK case study, namely the royal birth of 2013. The case study validates the feasibility of the framework for analysis and rapid visualisation. One observation is that there is good correlation between the results produced by the popular dictionary-based approach and the machine learning approach when large volumes of tweets are analysed. However, for rapid analysis to be possible faster methods need to be developed using big data techniques and parallel methods.Comment: http://www.blessonv.com/research/publicsentiment/ 9 pages. Submitted to IEEE BigData 2013: Workshop on Big Humanities, October 201

    A Low Dimensional Approximation For Competence In Bacillus Subtilis

    Full text link
    The behaviour of a high dimensional stochastic system described by a Chemical Master Equation (CME) depends on many parameters, rendering explicit simulation an inefficient method for exploring the properties of such models. Capturing their behaviour by low-dimensional models makes analysis of system behaviour tractable. In this paper, we present low dimensional models for the noise-induced excitable dynamics in Bacillus subtilis, whereby a key protein ComK, which drives a complex chain of reactions leading to bacterial competence, gets expressed rapidly in large quantities (competent state) before subsiding to low levels of expression (vegetative state). These rapid reactions suggest the application of an adiabatic approximation of the dynamics of the regulatory model that, however, lead to competence durations that are incorrect by a factor of 2. We apply a modified version of an iterative functional procedure that faithfully approximates the time-course of the trajectories in terms of a 2-dimensional model involving proteins ComK and ComS. Furthermore, in order to describe the bimodal bivariate marginal probability distribution obtained from the Gillespie simulations of the CME, we introduce a tunable multiplicative noise term in a 2-dimensional Langevin model whose stationary state is described by the time-independent solution of the corresponding Fokker-Planck equation.Comment: 12 pages, to be published in IEEE/ACM Transactions on Computational Biology and Bioinformatic

    A Direct Measurement of the Mean Occupation Function of Quasars: Breaking Degeneracies between Halo Occupation Distribution Models

    Full text link
    Recent work on quasar clustering suggests a degeneracy in the halo occupation distribution constrained from two-point correlation functions. To break this degeneracy, we make the first empirical measurement of the mean occupation function (MOF) of quasars at z∼0.2z \sim 0.2 by matching quasar positions with groups and clusters identified in the MaxBCG sample. We fit two models to the MOF, a power law and a 4-parameter model. The number distribution of quasars in host halos is close to Poisson, and the slopes of the MOF obtained from our best-fit models (for the power law case) favor a MOF that monotonically increases with halo mass. The best-fit slopes are 0.53±0.040.53 \pm 0.04 and 1.03±1.121.03\pm 1.12 for the power law model and the 4-parameter model, respectively. We measure the radial distribution of quasars within dark matter halos and find it to be adequately described by a power law with a slope −2.3±0.4-2.3 \pm 0.4. We measure the conditional luminosity function (CLF) of quasars and show that there is no evidence that quasar luminosity depends on host halo mass, similar to the inferences drawn from clustering measurements. We also measure the conditional black hole mass function (CMF) of our quasars. Although the results are consistent with no dependence on halo mass, we observe a slight indication of downsizing of the black hole mass function. The lack of halo mass dependence in the CLF and CMF shows that quasars residing in galaxy clusters have characteristic luminosity and black hole mass scales.Comment: Matches the ApJ accepted version (11 pages, 8 figures

    Identification of Si-vacancy related room temperature qubits in 4H silicon carbide

    Get PDF
    Identification of microscopic configuration of point defects acting as quantum bits is a key step in the advance of quantum information processing and sensing. Among the numerous candidates, silicon vacancy related centers in silicon carbide (SiC) have shown remarkable properties owing to their particular spin-3/2 ground and excited states. Although, these centers were observed decades ago, still two competing models, the isolated negatively charged silicon vacancy and the complex of negatively charged silicon vacancy and neutral carbon vacancy [Phys. Rev. Lett.\ \textbf{115}, 247602 (2015)] are argued as an origin. By means of high precision first principles calculations and high resolution electron spin resonance measurements, we here unambiguously identify the Si-vacancy related qubits in hexagonal SiC as isolated negatively charged silicon vacancies. Moreover, we identify the Si-vacancy qubit configurations that provide room temperature optical readout.Comment: 3 figure

    Excitation properties of the divacancy in 4H-SiC

    Full text link
    We investigate the quenching of the photoluminescence (PL) from the divacancy defect in 4H-SiC consisting of a nearest-neighbour silicon and carbon vacancies. The quenching occurs only when the PL is excited below certain photon energies (thresholds), which differ for the four different inequivalent divacancy configurations in 4H-SiC. Refined theoretical ab initio calculation for the charge-transfer levels of the divacancy show very good agreement between the position of the (0/-) level with respect to the conduction band for each divacancy configurations and the corresponding experimentally observed threshold, allowing us to associate the PL decay with conversion of the divacancy from neutral to negative charge state due to capture of electrons photoionized from other defects (traps) by the excitation. Electron paramagnetic resonance measurements are conducted in dark and under excitation similar to that used in the PL experiments and shed light on the possible origin of traps in the different samples. A simple model built on this concept agrees well with the experimentally-observed decay curves.Comment: 28 pages, 6 figure

    A 6-year-old boy presenting with traumatic evisceration following a bicycle handle bar injury: a case report

    Get PDF
    We report the case of a 6-year-old boy presenting with small bowel evisceration following a fall onto a bicycle handle-bar. His case is presented, a review of the literature performed and interesting photos pre and post-op are presented
    • …
    corecore