737 research outputs found

    Likelihood-based surrogate dimension reduction

    Full text link
    We consider the problem of surrogate sufficient dimension reduction, that is, estimating the central subspace of a regression model, when the covariates are contaminated by measurement error. When no measurement error is present, a likelihood-based dimension reduction method that relies on maximizing the likelihood of a Gaussian inverse regression model on the Grassmann manifold is well-known to have superior performance to traditional inverse moment methods. We propose two likelihood-based estimators for the central subspace in measurement error settings, which make different adjustments to the observed surrogates. Both estimators are computed based on maximizing objective functions on the Grassmann manifold and are shown to consistently recover the true central subspace. When the central subspace is assumed to depend on only a few covariates, we further propose to augment the likelihood function with a penalty term that induces sparsity on the Grassmann manifold to obtain sparse estimators. The resulting objective function has a closed-form Riemann gradient which facilitates efficient computation of the penalized estimator. We leverage the state-of-the-art trust region algorithm on the Grassmann manifold to compute the proposed estimators efficiently. Simulation studies and a data application demonstrate the proposed likelihood-based estimators perform better than inverse moment-based estimators in terms of both estimation and variable selection accuracy

    Snowmelt onset hinders bromine monoxide heterogeneous recycling in the Arctic

    Get PDF
    Reactive bromine radicals (bromine atoms, Br, and bromine monoxide, BrO) deplete ozone and alter tropospheric oxidation chemistry during the Arctic springtime (February–June). As spring transitions to summer (May–June) and snow begins to melt, reactive bromine events cease and BrO becomes low in summer. In this study, we explore the relationship between the end of the reactive bromine season and snowmelt timing. BrO was measured by Multi‐AXis Differential Optical Absorption Spectrometer at Utqiaġvik (Barrow), AK, from 2012 to 2016 and on drifting buoys deployed in Arctic sea ice from 2011 to 2016, a total of 13 site and year combinations. The BrO seasonal end date (SED) was objectively determined and was compared to surface‐air‐temperature‐derived melt onset date (MOD). The SED was highly correlated with the MOD (N = 13, R2 = 0.983, RMS = 1.9 days), and BrO is only observed at subfreezing temperatures. In subsets of these sites and years where ancillary data were available, we observed that snowpack depth reduced and rain precipitation occurred within a few days of the SED. These data are consistent with snowpack melting hindering BrO recycling, which is necessary to maintain enhanced BrO concentrations. With a projected warmer Arctic, a shift to earlier snowmelt seasons could alter the timing and role of halogen chemical reactions in the Arctic with impacts on ozone depletion and mercury deposition.Plain Language SummaryReactive bromine events in the Arctic are common in spring and deplete ozone and cause mercury deposition. These events are affected by snow and ice, which are changing in the Arctic; therefore, we need to understand how environmental conditions affect reactive bromine chemistry. We find that the reactive bromine season ends when snowpack begins to melt. Through these full seasonal observations, we find that reactive bromine events occur to warmer temperatures than previously reported, with 0°C being the observed threshold above which reactive bromine is absent. We also find that snow appears necessary for reactive bromine chemistry and rain stops this chemistry. Earlier snowmelt in a warmer Arctic would end the reactive bromine season earlier, decreasing late springtime ozone depletion and mercury deposition.Key PointsSnowmelt onset hinders reactive bromine heterogeneous recycling and ends season of reactive bromine eventsReactive bromine events occur at subfreezing air temperatures but not at higher temperaturesSnow appears necessary for reactive bromine heterogeneous recycling, and rainwater can terminate this chemistryPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138295/1/jgrd53947_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138295/2/jgrd53947.pd

    Application of symmetry properties to polarimetric remote sensing with JPL AIRSAR data

    Get PDF
    Based on symmetry properties, polarimetric remote sensing of geophysical media is studied. From the viewpoint of symmetry groups, media with reflection, rotation, azimuthal, and centrical symmetries are considered. The symmetries impose relations among polarimetric scattering coefficients, which are valid to all scattering mechanisms in the symmetrical configurations. Various orientation distributions of non-spherical scatterers can be identified from the scattering coefficients by a comparison with the symmetry calculations. Experimental observations are then analyzed for many geophysical scenes acquired with the Jet Propulsion Laboratory (JPL) airborne polarimetric SAR at microwave frequencies over sea ice and vegetation. Polarimetric characteristics of different ice types are compared with symmetry behaviors. The polarimetric response of a tropical rain forest reveals characteristics close to the centrical symmetry properties, which can be used as a distributed target to relatively calibrate polarimetric radars without any deployment of manmade calibration targets

    Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system

    Get PDF
    © 2015. An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water

    Evaluation of Surface and Near-Surface Melt Characteristics on the Greenland Ice Sheet using MODIS and QuikSCAT Data

    Get PDF
    The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet

    Effects of Mackenzie River Discharge and Bathymetry on Sea Ice in the Beaufort Sea

    Get PDF
    Mackenzie River discharge and bathymetry effects on sea ice in the Beaufort Sea are examined in 2012 when Arctic sea ice extent hit a record low. Satellite-derived sea surface temperature revealed warmer waters closer to river mouths. By 5 July 2012, Mackenzie warm waters occupied most of an open water area about 316,000 sq km. Surface temperature in a common open water area increased by 6.5 C between 14 June and 5 July 2012, before and after the river waters broke through a recurrent landfast ice barrier formed over the shallow seafloor offshore the Mackenzie Delta. In 2012, melting by warm river waters was especially effective when the strong Beaufort Gyre fragmented sea ice into unconsolidated floes. The Mackenzie and other large rivers can transport an enormous amount of heat across immense continental watersheds into the Arctic Ocean, constituting a stark contrast to the Antarctic that has no such rivers to affect sea ice

    Seafloor Control on Sea Ice

    Get PDF
    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas

    On the Feasibility of Linear Discrete-Time Systems of the Green Scheduling Problem

    Get PDF
    Peak power consumption of buildings in large facilities like hospitals and universities becomes a big issue because peak prices are much higher than normal rates. During a power demand surge an automated power controller of a building may need to schedule ON and OFF different environment actuators such as heaters and air quality control while maintaining the state variables such as temperature or air quality of any room within comfortable ranges. The green scheduling problem asks whether a scheduling policy is possible for a system and what is the necessary and sufficient condition for systems to be feasible. In this paper we study the feasibility of the green scheduling problem for HVAC(Heating, Ventilating, and Air Conditioning) systems which are approximated by a discrete-time model with constant increasing and decreasing rates of the state variables. We first investigate the systems consisting of two tasks and find the analytical form of the necessary and sufficient conditions for such systems to be feasible under certain assumptions. Then we present our algorithmic solution for general systems of more than 2 tasks. Given the increasing and decreasing rates of the tasks, our algorithm returns a subset of the state space such that the system is feasible if and only if the initial state is in this subset. With the knowledge of that subset, a scheduling policy can be computed on the fly as the system runs, with the flexibility to add power-saving, priority-based or fair sub-policies
    corecore