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Abstract 

An osmotic membrane bioreactor – reverse osmosis (OMBR-RO) hybrid system integrated 

with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and 

clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane 

effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane 

periodically bled them out for phosphorus recovery with pH adjustment. The RO process was 

used for draw solute recovery and clean water production. Results show that phosphorus 

recuperation from the MF permeate was most effective when the solution pH was adjusted to 

10, whereby the recovered precipitate contained 15 – 20% (wt/wt) of phosphorus. Periodic 

MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological 

performance and an increase in water flux during OMBR operation. Despite the build-up of 

organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of 

high quality reused water.  

 

Key words: Phosphorus recovery; osmotic membrane bioreactor (OMBR); forward osmosis 

(FO); reverse osmosis (RO); microfiltration (MF). 
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1. Introduction 

Phosphorus is a finite resource and an essential nutrient for agriculture production. In the 

environment, phosphorus is also a contaminant that can result in severe eutrophication of 

natural waterways (Conley et al., 2009). In addition, during wastewater treatment, 

phosphorus (in the form of phosphate) can react with ammonium and magnesium to form 

crystalline precipitate known as struvite, which causes blockage and scaling of plant 

equipment (Doyle et al., 2002). Thus, phosphorus recovery from wastewater is strategically 

important to secure a continuous and sustainable supply of this essential nutrient, reduce 

environmental discharge, and avoid struvite scaling.  

A novel osmotic membrane bioreactor (OMBR) system has been recently recognised as a 

promising technology in wastewater treatment and reuse (Achilli et al., 2009; Cornelissen et 

al., 2011; Luo et al., 2014; Nguyen et al., 2015). OMBR utilizes forward osmosis (FO) to 

extract treated water from the bioreactor mixed liquor into a draw solution. This system can 

be used as a stand-alone process to extract treated water for osmotic dilution or integrated 

with other processes, such as reverse osmosis (RO) or membrane distillation (MD), to 

produce clean water and recover the draw solute. Compared to conventional MBR systems 

that employ pressure-driven membrane processes, such as microfiltration (MF) and 

ultrafiltration (UF), OMBR has several advantages, including higher contaminant removal 

and lower fouling propensity (Cornelissen et al., 2008; Achilli et al., 2009; Alturki et al., 

2012). 

A major technical challenge to OMBR application is the build-up of salinity in the bioreactor 

(Yap et al., 2012; Luo et al., 2014). This occurs due to the high salt rejection by the FO 

membrane and, more importantly, reverse solute flux from the draw solution. The increased 

bioreactor salinity can severely affect the microbial viability and membrane performance 

(Nawaz et al., 2013). Thus, several approaches have been recently proposed to prevent 

salinity build-up in the bioreactor during OMBR operation. A promising control strategy is to 

integrate an MF or UF membrane with OMBR to form a hybrid MF/UF-OMBR system to 

bleed out dissolved inorganic salts accumulated in the bioreactor. By applying this strategy, 

Wang et al. (2014) demonstrated a stable operation of OMBR integrated with continuous MF 

extraction and concluded that the integration of MF could increase OMBR water flux and 

improve the biological treatment. Similar observations were subsequently reported by 

Holloway et al. (2015) who combined an UF membrane with OMBR. 
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The hybrid MF/UF-OMBR system has the potential to simultaneously recover phosphorus 

and clean water during wastewater treatment. In this hybrid system, the FO membrane can 

effectively retain phosphate and magnesium/calcium based salts in the bioreactor, while the 

MF/UF membrane allows them to be bled out for phosphorus recovery by pH adjustment. 

Based on this rationale, Qiu et al. (2015) showed that phosphorus could be directly recovered 

from municipal wastewater mostly in the form of calcium phosphate by a hybrid MF-OMBR 

system, where the FO and MF membranes were operated continuously in parallel. In their 

study, phosphate concentration in the bioreactor was in the range of 10 to 70 mg/L over 98 

days of operation and decreased with an increase in the MF permeate flux (Qiu et al., 2015). 

It is noteworthy that phosphate enrichment in the bioreactor can be further enhanced by 

operating the MF membrane at low permeate flux or in periodic extraction mode, thereby 

increasing the economics of phosphorus recovery from the OMBR mixed liquor, preventing 

the  hydraulically pressure-driven MF membrane from fouling, and reducing its energy 

consumption.  

This study aimed to investigate the potential of a hybrid OMBR-RO system integrated with 

periodic MF extraction to simultaneously recover phosphorus and clean water from raw 

sewage. The RO process was used for draw solute recovery and clean water production. 

Phosphorus was directly recovered from the MF permeate, extracted periodically from the 

OMBR mixed liquor, in the form of phosphorus precipitates by pH adjustment. Performance 

of the hybrid OMBR-RO system was systematically assessed in terms of water production, 

product water quality, membrane fouling, and biological stability.  

2. Materials and methods  

2.1 Wastewater and membranes 

Raw sewage was collected from the Wollongong Wastewater Treatment Plant (New South 

Wales, Australia) and stored at 4 °C. Over the experimental period of 60 days, 18 

measurements were conducted to determine key water quality parameters of this sewage. The 

composition of raw sewage was relatively stable. The concentrations of orthophosphate, 

ammonia, calcium, magnesium, and potassium were 24 ± 4, 45 ± 4, 23 ± 5, 33 ± 3 and 15 ± 1 

mg/L, respectively (average ± standad deviation). Conductivity, pH, total organic carbon 

concentration of this sewage were 1130 ± 53 µS/cm, 7.3 ± 0.2, and 28 ± 5 mg/L, respectively 

(average ± standad deviation). 
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A flat-sheet, cellulose-based FO membrane from Hydration Technology Innovations 

(Albany, OR) was used for the OMBR process. The FO membrane comprised a cellulose 

triacetate layer embedded with a polyester mesh for mechanical support. A flat-sheet, ESPA2 

membrane supplied by Hydranautics (Oceanside, CA) was used for the RO process. The RO 

membrane was composed of a thin polyamide layer with a porous polysulfone support layer.  

A hollow fibre MF membrane module (Mitsubishi Rayon Engineering, Tokyo, Japan) was 

also used in this study. The MF membrane was made of polyvinylidene fluoride. The 

effective surface area and nominal pore size of this membrane module were 740 cm2 and 

0.4 μm, respectively. 

2.2 OMBR-RO system and operation 

The lab-scale OMBR-RO hybrid system used in this study comprised a feed reservoir, an 

aerobic bioreactor, and a submerged FO and a cross-flow RO unit (Fig. 1). A Masterflex 

peristaltic pump (Cole-Parmer, Vernon Hills, IL) controlled by a water level sensor was used 

to feed the bioreactor with an effective volume of 6 L. The feed reservoir was placed on a 

digital balance (Mettler-Toledo, Hightstown, IL) connected to a computer to determine the 

OMBR water flux. 

[FIGURE 1] 

The FO component comprised a submerged, plate-and-frame membrane cell, a gear pump 

(Micropump, Vancouver, WA), and a stainless steel draw solution reservoir with a working 

volume of 8 L. The membrane cell was made of acrylic plastic with a draw solution flow 

channel 20 cm long, 15 cm wide, and 0.4 cm high. The FO membrane was mounted on the 

cell with the support layer in contact with the draw solution (i.e. FO mode). A 0.5 M NaCl 

draw solution (corresponding to osmotic pressure of 23 bar determined by the OLI Stream 

Analyzer software) was circulated from the draw solution reservoir to the membrane cell at a 

cross-flow velocity of 2.8 cm/s. 

The RO process was used to recover the draw solute and extract clean water. A Hydra-Cell 

pump (Wanner Engineering, Minneapolis, MN) was used to feed the draw solution to a 

stainless steel RO membrane cell, which had a flow channel 10 cm long, 4 cm wide and 0.2 

cm deep. The hydraulic pressure and retentate cross-flow velocity were regulated by a back-

pressure regulator and a bypass valve. A digital flow meter (Optiflow, Palo Alto, CA) was 

connected to a computer to monitor the permeate flux. The draw solution temperature was 
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maintained at 22 ± 1 °C by a temperature control unit (Neslab RTE7, Waltham, MA) 

equipped with a stainless steel heat exchanger coil.  

Prior to the OMBR-RO operation, activated sludge collected from the Wollongong 

Wastewater Treatment Plant (New South Wales, Australia) was seeded to the bioreactor 

integrated with an MF membrane module to form a standard MBR to pre-condition the 

biomass under laboratory conditions. Once acclimatized in terms of the bulk organic removal 

(i.e. 95% total organic carbon (TOC) removal), the MF module was replaced by the FO 

module and the RO unit was integrated to form the hybrid OMBR-RO system. 

The hybrid OMBR-RO system was run for 60 days in a temperature-controlled room (22 ± 1 

°C), following a cycle of 8 days ‘on’ (continuous operation) and 2 days ‘off’ (cease of 

feeding and FO-RO extraction). The MF membrane was operated to extract water from the 

bioreactor mixed liquor for subsequent phosphorus recovery when the FO and RO 

membranes were kept ‘off’ (section 2.3). The initial mixed liquor suspended solids (MLSS) 

concentration was adjusted to approximately 10 g/L. The sludge retention time (SRT) was 

maintained at 50 days by regularly wasting a small amount of mixed liquor every two days. 

The hydraulic retention time (HRT) was determined by the OMBR water flux and was in the 

range of 30 to 80 hours. The mixed liquor pH was maintained between 6 and 7 by 

periodically dosing small volumes of concentrated HCl solution to reduce the spontaneous 

precipitation of phosphate minerals in the bioreactor. The bioreactor was continuously 

aerated to obtain dissolved oxygen (DO) concentration of approximately 5 mg/L throughout 

the experiment. The RO permeate flux was adjusted daily to match that from the OMBR by 

regulating the hydraulic pressure while maintaining the retentate cross-flow velocity at 41.7 

cm/s. On day 30 of the experiment, 50 g NaCl was added to the draw solution to compensate 

for the draw solute loss. This value was calculated based on the reduction in the concentration 

of the draw solution (due to reverse draw solute flux and its permeation through the RO 

membrane), which was determined by its electrical conductivity and a NaCl calibration 

curve.  

2.3 Phosphorus recovery protocol 

During OMBR-RO off time, the MF membrane was operated for 24 hours to extract 3 L 

water from the bioreactor mixed liquor at a constant permeate flux of 1.7 L/m2h. The 

bioreactor mixed liquor was subsequently replenished with 3 L sewage and aerated for 24 

hours before a new OMBR-RO operating recycle. Periodic MF extraction was employed here 
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to ensure high phosphate enrichment in the bioreactor during OMBR-RO operation, thereby 

increasing the efficiency of subsequent phosphorus recovery. In addition, the intermittent 

operation mode could also reduce the MF membrane fouling and energy consumption.  

Phosphorus in the MF permeate was directly recovered by pH adjustment using a 3 M NaOH 

solution. The MF permeate extracted after the first 8 days of OMBR-RO operation (denoted 

as “MF-1”) was used to evaluate the efficiency of phosphorus recovery as a function of pH 

(between pH 8 and 13). The optimal pH was applied to recover phosphorus from the MF 

permeate extracted in the subsequent OMBR-RO operating cycles. The pH-adjusted permeate 

was gently mixed using a magnetic stirrer, and then filtered through 0.7 µm glass filters to 

recover precipitates. Recovered solids were air-dried in a desiccator at room temperature (22 

± 1 °C) and filtrates were stored at 4 °C for later analysis. 

2.4 Analytical methods 
2.4.1 Water quality analysis 

TOC and total nitrogen (TN) were assessed by a TOC/TN analyser (TOC-VCSH, Shimadzu, 

Kyoto, Japan). Ammonium (NH4
+-N) and orthophosphate (PO4

3--P) ions were measured 

using a Flow Injection Analysis system (QuikChem 8500, Lachat, CO). Calcium (Ca2+), 

magnesium (Mg2+), and potassium (K+) ions were determined using an inductively coupled 

plasma-optical emission spectrometer (710 ICP-OES, Agilent Technologies, CA). Solution 

pH and conductivity were measured using an Orion 4-Star Plus pH/conductivity meter 

(Thermo Scientific, Waltham, MA). 

2.4.2 Precipitate characterization  

Precipitates obtained were air-dried and characterized using X-ray diffraction (GBC MMA, 

Hampshire, IL). The morphology and elemental composition of precipitates were examined 

using a scanning electron microscopy (SEM) coupled to energy dispersive spectroscopy 

(EDS) (JEOL JCM-6000, Tokyo, Japan). In addition, the dried precipitates were dissolved 

with 5% nitric acid to determine major elemental concentrations using ICP-OES. 

2.4.3 Membrane autopsy  

At the conclusion of the experiment, the surface morphology of both FO and RO membranes 

was analysed by SEM-EDS. Prior to SEM measurement, membrane samples were air-dried in 

a desiccator and then coated with an ultra-thin layer of gold using a sputter coater (SPI 

Module, West Chester, PA). 
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2.4.4 Biomass characterization 

MLSS and mixed liquor volatile suspended solid (MLVSS) concentrations were measured 

following the Standard Method 2540. Biomass activity was assessed by measuring the 

specific oxygen uptake rate (SOUR) of the activated sludge based on the Standard Method 

1683. Extracellular polymeric substances (EPS) and soluble microbial products (SMP) in the 

mixed liquor were quantified by measuring the protein and polysaccharide concentrations. 

EPS was extracted using a thermal method previously reported by Zhang et al. (1999). 

Protein concentration was measured by the Folin method using bovine serum albumin as the 

standard (Lowry et al., 1951). Polysaccharide concentration was determined using the 

phenol-sulfuric acid method with a glucose standard (Dubois et al., 1956).  

3. Results and discussion 

3.1 Bioreactor salinity and phosphate enrichment 

During OMBR operation, reverse solute (NaCl) flux from the draw solution and high salt 

rejection by the FO membrane resulted in an increase in the mixed liquor conductivity (Fig. 

2a). By periodically bleeding out dissolved salts via the MF membrane, salinity build-up in 

the bioreactor could be effectively controlled. During the entire experiment, the mixed liquor 

conductivity was in the range of 7 to 14 mS/cm (corresponding to approximately 3.5 and 7 

g/L NaCl, respectively). This salinity range is higher than that reported in previous studies 

where a stable mixed liquor conductivity of approximately 5 mS/cm was observed during 

OMBR operation with continuous MF extraction (Wang et al., 2014; Qiu et al., 2015). 

Nevertheless, following a small and brief disturbance at the beginning of the experiment 

(section 3.3), stable biological performance could be obtained. The observed stable operation 

can be attributed to the acclimatization of the biomass in the activated sludge to the saline 

condition (Lay et al., 2010; Jang et al., 2013). 

FO membrane rejection resulted in the enrichment of Ca2+, Mg2+, K+, and PO4
3--P in the 

bioreactor (Fig. 2b). Their high concentrations could induce spontaneous phosphate 

precipitation in the bioreactor, particularly under alkaline conditions (Qiu and Ting, 2014), 

thereby reducing soluble phosphate ions extractable by the MF membrane for subsequent 

recovery. Chen et al. (2014) observed an initial increase but then a subsequent decrease in 

phosphorus concentration in an anaerobic OMBR when the mixed liquor pH increased from 

6.9 to 7.6. The pH increase was driven by forward proton diffusion from the bioreactor to the 

draw solution associated with reverse draw solute flux to maintain the mixed liquor 
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electroneutrality (Hancock and Cath, 2009). Thus, in this study, to reduce spontaneous 

phosphate precipitation in the bioreactor, the mixed liquor pH was maintained between 6 and 

7 by periodically adding small amounts of concentrated HCl solution. Although a lower 

mixed liquor pH could maximize dissolved phosphate ions in the bioreactor for subsequent 

MF extraction (Qiu et al., 2015), it may adversely affect the microbial viability (Tadkaew et 

al., 2010) and the FO membrane performance (Xie et al., 2012). 

 [FIGURE 2] 

3.2 Phosphorous recovery from the MF permeate 

Dissolved inorganic salts and phosphate enriched in the bioreactor during OMBR operation 

were readily permeable through the MF membrane (Fig.2b). Inorganic salts may facilitate 

phosphorus recovery by enhancing ionic strength and precipitation potentials (Song et al., 

2002). Therefore, phosphorus in the MF permeate could be directly captured in the form of 

phosphate minerals by pH adjustment without any inorganic salt addition.  

3.2.1 pH adjustment of the MF permeate 

By increasing the MF permeate pH, phosphorus precipitate could be obtained. As shown in 

Fig. 3, soluble Ca2+ and PO4
3--P in the MF permeate decreased considerably when pH 

increased from 8 to 10. The increase in pH resulted in the deprotonation of phosphate species 

(i.e. from H2PO4
- to HPO4

2- and then PO4
3-) and thus enhanced their reactivity as inorganic 

ligands or ion pairs with calcium (Reddy and DeLaune, 2008). Elemental analysis also 

revealed an increase in calcium and phosphorus contents in the recovered precipitate as the 

MF permeate pH increased from 8 to 10. Further pH increase from 10 to 13 resulted in nearly 

complete capture of PO4
3--P from the MF permeate (Fig. 3). At the same time, the high pH 

also induce the formation of other calcium/magnesium-based precipitates without 

phosphorus, as indicated by the significant decline in soluble Ca2+ and Mg2+ in the MF 

permeate at pH above 10. As a result, phosphorus content in the obtained precipitate 

decreased when pH increased from 10 to 13. Thus, a solution pH of up to 10 would assist in 

maximizing phosphorus content in the recovered precipitate from the MF permeate. This 

result is consistent with that previously reported by Song et al. (2002) who modelled that an 

increase in solution pH up to 10 significantly promoted phosphorus recovery by the 

precipitation of calcium phosphate.  

Both NH4
+-N and K+ can react with Mg2+ and PO4

3--P to form struvite or its analogues for 

phosphorus recovery (Xu et al., 2011). In this study, despite the high Mg2+ and PO4
3--P 
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concentrations, no significant decrease in either NH4
+-N or K+ concentrations was observed 

in the MF permeate after recovering the precipitate at pH of 8 – 13 (Fig. 3). This observation 

suggests that the crystallization of struvite and its analogues was not a major pathway for 

phosphorus recovery. Indeed, as shown in the next section, the obtained phosphorus was 

mostly in the form of amorphous calcium phosphates.  

[FIGURE 3] 

3.2.2 Precipitate composition and characteristics 

The precipitate recovered from the MF-1 permeate at pH 10 was characterized to identify the 

solid morphology, elemental composition, and structure. The recovered precipitate 

demonstrated a distinctive amorphous structure. The EDS spectrum of the recovered solids 

showed that the three major peaks were oxygen, phosphorus, and calcium, which are key 

elements of calcium phosphate. In addition, a low nevertheless discernible peak was also 

detected for carbon, sodium, magnesium, silicon, chloride, and potassium, possibly due to 

their considerable accumulation in the bioreactor during OMBR operation. The XRD 

spectrum showed a broad peak between the diffusion angles of 25º and 35º, suggesting that 

the obtained precipitate was mostly amorphous calcium phosphates (Cao and Harris, 2008), 

rather than the more thermodynamically stable hydroxyapatite. This observation is consistent 

with that reported by Qiu et al. (2015) who attributed it to the high activation energy required 

for hydroxyapatite formation. In addition, the presence of Mg2+ and organic matter (e.g. 

humic-like substances) could inhibit the conversion of amorphous calcium phosphate to 

hydroxyapatite (Alvarez et al., 2004; Cao and Harris, 2008).  

3.2.3 Phosphorus recovery 

Phosphorus content in the precipitates obtained from the MF permeate at pH 10 was in the 

range of 15 to 20% throughout the experiment (Fig. 4). This range is higher than that 

previously reported (11 – 13%) by Qiu et al. (2015), possibly due to a more significant 

phosphate enrichment in the bioreactor with periodic MF extraction and a higher operational 

pH (pH 10 versus 9). The calcium/phosphorus molar ratio in the recovered precipitate was in 

range of 0.9 – 1.4, which was slightly lower than the theoretical ratio (1.5) of amorphous 

calcium phosphate. This result could be attributed to the co-precipitation of amorphous 

magnesium phosphate, as evidenced by the high magnesium content (12 – 17%) in the 

precipitate (Fig. 4). Nevertheless, beneficial reuse or environmental discharge of the MF 
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permeate after phosphorus recovery must be carefully considered given its high salinity and 

pH. A potential strategy is to blend it with the RO permeate.  

 [FIGURE 4] 

3.3 OMBR-RO performance 
3.3.1 Water production and membrane fouling 

A small and steady water flux decline was observed during OMBR operation (Fig. 5). The 

observed flux decline can be attributed to membrane fouling, salinity build-up in the 

bioreactor (Fig. 2a), and a decrease in the draw solution concentration. The last two factors 

could lower the overall driving force (i.e. osmotic pressure difference) for water transport. 

Thus, a reduction in bioreactor salinity due to periodic MF extraction and subsequent 

wastewater replenishment increased the water flux of OMBR at the beginning of each 

operating cycle (Fig. 5). 

[FIGURE 5] 

Reverse draw solute (NaCl) flux and to a lesser extent its permeation through the RO 

membrane (rejection > 98%) resulted in a decrease in the draw solution concentration. As 

noted in section 2.2, 50 g NaCl was added on day 30 to replenish the draw solute loss. 

However, NaCl replenishment did not significantly enhance the OMBR water flux compared 

to that obtained from the previous cycle (Fig. 5). In addition, the role of bioreactor salinity 

reduction in flux increase was less significant from day 30 onward. These observations 

indicate that membrane fouling gradually played a much more important role in OMBR flux 

decline as the experiment progressed. The FO membrane autopsy at the conclusion of the 

experiment suggests the formation of cake layer, which was mainly composed of carbon, 

oxygen, sodium, phosphorus, calcium, aluminium, and iron. 

RO membrane permeability exhibited a similar profile to the OMBR water flux over the 

entire experiment (Fig. 5). As the hybrid system operated, the RO membrane permeability 

decreased due to membrane fouling caused by the build-up of contaminants in the draw 

solution (Fig. 6). A notable increase in the RO membrane permeability was observed at the 

beginning of each operating cycle (Fig. 5), likely due to fouling mitigation by membrane 

relaxation when the RO filtration was ceased.   

3.3.2 Removal of organic matter and nutrients 
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In the OMBR-RO hybrid system, the synergy between biological treatment and high-

retention membrane processes (i.e. FO and RO) secured the production of high quality 

recycled water (Fig. 6). During OMBR operation, TOC concentration in the bioreactor 

increased within the first 30 days (Fig. 6a). This observation could be attributed to the 

adverse impacts of the elevated bioreactor salinity and the high rejection of organic matter by 

the FO membrane. The high bioreactor salinity could severely affect the microbial 

metabolism and thus limit the biological treatment (Lay et al., 2010). As the experiment 

progressed, TOC concentration in the bioreactor gradually decreased and then stabilized at 

approximately 10 mg/L from day 35 onward, probably due to microbial adaption to saline 

conditions (Jang et al., 2013). 

[FIGURE 6] 

The elevated bioreactor salinity also inhibited the nitrification process, thus increasing NH4
+-

N concentration in the bioreactor (Fig. 6b). In aerobic bioreactors, the nitrification process 

drives the conversion of NH4
+-N to NO2

--N and then NO3
--N. These nitrogen species could 

be effectively retained by the FO membrane (Holloway et al., 2007; Cath et al., 2010). As a 

result, the incomplete nitrification process under a highly saline condition induced the build-

up of NH4
+-N and NOx

--N in the bioreactor, and thereby increasing TN concentration (Fig. 

6c). Nevertheless, both NH4
+-N and TN concentrations in the bioreactor gradually decreased 

from day 30 onward. Once again, this observation could be ascribed to microbial 

acclimatization to the saline environment of the bioreactor. 

Biological phosphorus removal in the aerobic bioreactors occurs mainly through microbial 

assimilation, particularly by polyphosphate accumulating organisms (Zuthi et al., 2013). 

These organisms are susceptible to saline conditions, and the increased osmotic pressure 

within their cells due to salt accumulation could diminish their phosphate accumulating 

capacity (Lay et al., 2010). Thus, phosphorus removal in OMBR relies largely on the physical 

rejection by the FO membrane (Yap et al., 2012). In this study, a considerable build-up of 

PO4
3--P in the bioreactor was observed, but its concentration in both the draw solution and the 

product water (i.e. RO permeate) was negligible (Fig. 6d). Holloway et al. (2007) also 

showed that near complete rejection of phosphate by an FO membrane could be attained 

during concentration of anaerobically digested sludge centrate. The high phosphate rejection 

by FO membranes can be ascribed to the negative charge and large hydrated radius of 

hydrogen phosphate and dihydrogen phosphate ions, which are the dominant phosphate 

species in the pH range of 5 to 10 (Holloway et al., 2007; Reddy and DeLaune, 2008). 
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A notable build-up of organic matters (indicated by elevated concentrations of TOC, TN, and 

NH4
+-N) in the draw solution was observed as the experiment progressed (Fig. 6). It has been 

previously reported that contaminants that were permeable through the FO but not the RO 

membrane could accumulate in the draw solution and subsequently reduce the product water 

quality in closed-loop FO-RO hybrid systems (Cath et al., 2010; D'Haese et al., 2013). In this 

study, a small but discernible decrease in the overall removal of organic matter and NH4
+-N 

by the hybrid OMBR-RO system was observed (Fig. 6). In addition, as discussed above, 

contaminant accumulation in the draw solution also reduced the permeability of the RO 

membrane (Fig. 5). Therefore, an additional process (e.g. granular activated carbon 

adsorption) should be implemented to minimize contaminant build-up in the draw solution 

(Xie et al., 2013), to secure the product water quality in the hybrid OMBR-RO system and 

enhance the system sustainability in practical application.  

3.3.3 Biomass characteristics   

Water extraction by the MF membrane from OMBR mixed liquor for phosphorus recovery 

did not significantly impact biomass characteristics (Table 1). The MLSS and MLVSS 

concentrations in the bioreactor decreased within the first 28 days. A similar decrease over 

time was also observed for the sludge SOUR value. These observations were likely due to the 

inhibition on the biological growth and activity caused by the elevated bioreactor salinity 

(Reid et al., 2006; Lay et al., 2010). Nevertheless, stable biomass concentration and sludge 

SOUR value were observed from day 28 onward due to microbial adaptation to the saline 

bioreactor condition.  

[TABLE 1] 

Sludge response to the elevated bioreactor salinity also caused an increase in SMP 

concentration in the mixed liquor, especially within the first 8 days (i.e. the first OMBR-RO 

operating cycle). The increased SMP concentration was contributed by cell lysis, EPS 

release, and the production of unmetabolised and intermediate substances under the increased 

salinity condition (Reid et al., 2006). On the other hand, an increase in salinity could enhance 

the EPS solubility in the bioreactor (Laspidou and Rittmann, 2002). Thus, there was not 

significant variation in EPS concentration in the mixed liquor throughout the experiment 

(Table 1). This observation is consistent with that previously reported by Chen et al. (2014). 
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4. Conclusion 

Results reported here show the potential of OMBR-RO with periodic MF extraction to 

simultaneously recover phosphorus and clean water from wastewater. Phosphorus was 

captured from the MF permeate, extracted periodically from OMBR mixed liquor, mainly in 

the form of amorphous calcium phosphates with phosphorus content of 15 – 20% at pH 10. 

Periodic MF extraction also effectively controlled salinity build-up in the bioreactor, ensuring 

stable biological performance and increasing OMBR water production. Although OMBR-RO 

allowed for the recovery of high quality water, further investigation is required to address the 

build-up of organic matter and ammonia in the draw solution. 

Supplementary data 

Supplementary data associated with this article can be found in the online version. 
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Fig. 1: Schematic diagram of a lab-scale OMBR-RO hybrid system integrated with periodic 

MF extraction.  
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Fig. 2: (a) Mixed liquor conductivity and (b) major cation and PO4
3--P concentrations in the 

bioreactor. OMBR-RO was run in a cycle of 8 d on and 2 d off. MF was operated for 24 h to 

extract 3 L water from the bioreactor for phosphorus recovery during OMBR-RO off time. 

The bioreactor was then replenished with 3 L sewage and aerated for 24 h. On day 30, 50 g 

NaCl was added to the draw solution. Experimental conditions: draw solution = 0.5 M NaCl; 

cross-flow velocity = 2. 8 cm/s; initial MLSS concentration = 10 g/L; mixed liquor pH = 6 – 

7; SRT = 50 d; HRT = 30 – 80 h; DO = 5 mg/L; temperature = 22 ± 1 ºC. 
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Fig. 3: Orthophosphate, ammonium, and major cation concentrations in MF-1 permeate 

before and after phosphorus recovery by pH adjustment. MF-1 permeate was extracted from 

OMBR mixed liquor in the first operating cycle. MF permeate pH was adjusted using 3 M 

NaOH solution and then gently mixed, followed by filtering through 0.7 µm glass filters. 

Error bars represent standard deviation from duplicate measurements. 
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Fig. 4: Major elements in the precipitate recovered from the MF permeate (extracted 

periodically from OMBR mixed liquor) at pH 10. Error bars represent standard deviation 

from duplicate measurements. 
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Fig. 5: OMBR water flux and RO membrane permeability over time. Operational protocol 

and conditions of OMBR-RO are as detailed in the caption of Fig. 1. RO permeate flux was 

adjusted daily to match that from OMBR by changing the hydraulic pressure while 

maintaining the retentate cross-flow velocity at 41.7 cm/s. 
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Fig. 6: (a) TOC, (b) NH4
+-N, (c) TN, and (d) PO4

3--P concentrations and their overall 

removal by the hybrid OMBR-RO system. Experimental conditions are as described in the 

caption of Fig. 1.  
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LIST OF TABLE 

Table 1: Biomass characteristics during OMBR-RO operation.  

Time 
(d) 

MLSS 
(g/L) 

MLVSS 
(g/L) 

SOUR  
(mg O2/g MLVSS h) 

SMP 
(mg/L) 

EPS  
(mg/g MLVSS) 

1 9.7 5.9 4.6 81 31 
8 8.3 5.5 3.3 147 25 
18 6.7 4.4 2.8 128 34 
28 6.1 3.6 2.9 123 23 
38 6.2 4.2 2.7 108 35 
48 6.2 4.0 2.8 100 21 
58 6.1 3.8 3.0 107 27 
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Table S1: Operational protocol of the hybrid OMBR-RO system integrated with periodic MF 

extraction.  

Time (d) Procedure 
1 – 8 

11 – 18 
21 – 28 
31 – 38 
41 – 48 
51 – 58 

Continuously operating the hybrid OMBR-RO system 

9, 19, 29, 39, 49, 59 Ceasing feeding and the FO-RO extraction;  
Operating MF for 24 h to extract 3 L water from OMBR mixed liquor  

10, 20, 30, 40, 50 
Ceasing feeding and the FO-RO extraction;  

Removing the MF membrane module; 
Replenishing 3 L sewage to OMBR mixed liquor and aerating for 24 h 
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Fig. S1: Mixed liquor pH over the entire experiment. Mixed liquor pH was maintained 

between 6 and 7 by periodic addition of concentrated HCl solution. Experimental conditions: 

draw solution = 0.5 M NaCl; cross-flow rate velocity = 2. 8 cm/s; initial MLSS concentration 

= 10 g/L; SRT = 50 d; HRT = 30 – 80 h; DO = 5 mg/L; temperature = 22 ± 1 ºC; RO 

retentate cross-flow velocity = 41.7 cm/s.  
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Fig. S2: Major elements in the precipitate recovered from MF-1 permeate (extracted after the 

first 8 days of OMBR-RO operation). MF permeate pH was adjusted using 3 M NaOH 

solution and then gently mixed, followed by filtering through 0.7 µm glass filters. Error bars 

represent standard deviation from duplicate measurements. 
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Fig. S3: (a) SEM image, (b) EDS measurement, and (c) XRD analysis, (d) visible observation 

of precipitates recovered from MF-1 permeate (extracted after the first 8 days of OMBR-RO 

operation) at pH 10.  
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Fig. S4: Draw solution (NaCl) conductivity during OMBR-RO operation. Experimental 

conditions are as given in the caption of Fig. S1. On day 30, 50 g NaCl was added to 

replenish the draw solute loss.  
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Fig. S5: FO membrane autopsy at the conclusion of the experiment: (a) photo of the fouled 

FO membrane; (b) SEM micrograph; and (c) EDS analysis for foulant elemental 

composition. Experimental conditions are as described in the caption of Fig. S1.  
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