36 research outputs found

    A Review of Smishing Attaks Mitigation Strategies

    Get PDF
    Mobile Smishing crime has continued to escalate globally due to technology enhancements and people's growing dependence on smartphones and other technologies. SMS facilitates the distribution of crucial information that is principally important for non-digital savvy users who are typically underprivileged. Smishing, often known as SMS phishing, entails transmitting deceptive text messages to lure someone into revealing individual information or installing malware. The number of incidences of smishing has increased tremendously as the internet and cellphones have spread to even the most remote regions of the globe

    Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors [final revised article]

    Get PDF
    East African countries face an increasing threat from poor air quality stemming from rapid urbanization, population growth, and a steep rise in fuel use and motorization rates. With few air quality monitoring systems available, this study provides much needed high temporal resolution data to investigate the concentrations of particulate matter (PM) air pollution in Kenya. Calibrated low-cost optical particle counters (OPCs) were deployed in Kenya in three locations: two in the capital Nairobi and one in a rural location in the outskirts of Nanyuki, which is upwind of Nairobi. The two Nairobi sites consist of an urban background site and a roadside site. The instruments were composed of an AlphaSense OPC-N2 ran with a Raspberry Pi low-cost microcomputer, packaged in a weather-proof box. Measurements were conducted over a 2-month period (February–March 2017) with an intensive study period when all measurements were active at all sites lasting 2 weeks. When collocated, the three OPCN2 instruments demonstrated good inter-instrument precision with a coefficient of variance of 8.8 ± 2.0 % in the fine particle fraction (PM2.5). The low-cost sensors had an absolute PM mass concentration calibration using a collocated gravimetric measurement at the urban background site in Nairobi. The mean daily PM1 mass concentration measured at the urban roadside, urban background and rural background sites were 23.9, 16.1 and 8.8 ”g m−3 , respectively. The mean daily PM2.5 mass concentration measured at the urban roadside, urban background and rural background sites were 36.6, 24.8 and 13.0 ”g m−3, respectively. The mean daily PM10 mass concentration measured at the urban roadside, urban background and rural background sites were 93.7, 53.0 and 19.5 ”g m−3, respectively. The urban measurements in Nairobi showed that PM concentrations regularly exceed WHO guidelines in both the PM10 and PM2.5 size ranges. Following a “Lenschow”-type approach we can estimate the urban and roadside increments that are applicable to Nairobi (Lenschow et al., 2001). The median urban increment is 33.1 ”g m−3 and the median roadside increment is 43.3 ”g m−3 for PM2.5. For PM1, the median urban increment is 4.7 ”g m−3 and the median roadside increment is 12.6 ”g m−3. These increments highlight the importance of both the urban and roadside increments to urban air pollution in Nairobi. A clear diurnal behaviour in PM mass concentration was observed at both urban sites, which peaks during the morning and evening Nairobi rush hours; this was consistent with the high roadside increment indicating that vehicular traffic is a dominant source of PM in the city, accounting for approximately 48.1 %, 47.5 % and 57.2 % of the total PM loading in the PM10, PM2.5 and PM1 size ranges, respectively. Collocated meteorological measurements at the urban sites were collected, allowing for an understanding of the location of major sources of particulate matter at the two sites. The potential problems of using low-cost sensors for PM measurement without gravimetric calibration available at all sites are discussed. This study shows that calibrated low-cost sensors can be successfully used to measure air pollution in cities like Nairobi. It demonstrates that low-cost sensors could be used to create an affordable and reliable network to monitor air quality in cities

    Airborne particulate matter monitoring in Kenya using calibrated low cost sensors [discussion paper]

    Get PDF
    East African countries face an increasing threat from poor air quality, stemming from rapid urbanisation, population growth and a steep rise in fuel use and motorization rates. With few air quality monitoring systems available, this study provides the much needed high temporal resolution data to investigate the concentrations of particulate matter (PM) air pollution in Kenya. Calibrated low cost optical particle counters (OPCs) were deployed in Kenya in three locations: two in the capital of Nairobi and one in a rural location in the outskirts of Nanyuki, which is upwind of Nairobi. The two Nairobi sites consist of an urban background site and a roadside site. The instruments were composed of an Alphasense OPC-N2 optical particle counter (OPC) ran with a raspberry pi low cost microcomputer, packaged in a weather proof box. Measurements were conducted over a two-month period (February–March 2017) with an intensive study period when all measurements were active at all sites lasting two weeks. When collocated, the three OPC-N2 instruments demonstrated good inter-instrument precision with a coefficient of variance of 8.8±2.0% in the PM2.5 fraction. The low cost sensors had an absolute PM mass concentration calibration using a collocated gravimetric measurement at the urban background site in Nairobi. The mean daily PM1 mass concentration measured at the urban roadside, urban background and rural background sites were 23.9, 16.1, 8.8”gm−3. The mean daily PM2.5 mass concentration measured at the urban roadside, urban background and rural background sites were 36.6, 24.8, 13.0”gm−3. The mean daily PM10 mass concentration measured at the urban roadside, urban background and rural background sites were 93.7, 53.0, 19.5”gm−3. The urban measurements in Nairobi showed that particulate matter concentrations regularly exceed WHO guidelines in both the PM10 and PM2.5 size ranges. Following a Lenschow type approach we can estimate the urban and roadside increments that are applicable to Nairobi. Median urban and roadside increments are 33.1 and 43.3”gm−3 for PM10, respectively, the median urban and roadside increments are 7.1 and 18.3”gm−3 for PM2.5, respectively, and the median urban and roadside increments are 4.7 and 12.6”gm−3 for PM1, respectively. These increments highlight the importance of both the urban and roadside increments to urban air pollution in Nairobi. A clear diurnal behaviour in PM mass concentration was observed at both urban sites, which peaks during the morning and evening Nairobi rush hours; this was consistent with the high measured roadside increment indicating vehicular traffic being a dominant source of particulate matter in the city, accounting for approximately 48.1, 47.5, and 57.2% of the total particulate matter loading in the PM10, PM2.5 and PM1 size ranges, respectively. Collocated meteorological measurements at the urban sites were collected, allowing for an understanding of the location of major sources of particulate matter at the two sites. The potential problems of using low cost sensors for PM measurement without gravimetric calibration available at all sites are discussed. This study shows that calibrated low cost sensors can be used successfully to measure air pollution in cities like Nairobi. It demonstrates that low cost sensors could be used to create an affordable and reliable network to monitor air quality in cities

    Analysing the Effect of Cassava Flour as a Mixture on the Physical, Mechanical, and Durability Properties of High-Strength Concrete

    Get PDF
    The availability, cost, and environmental impact of chemical admixtures are reduced when natural substitute materials are incorporated into the concrete as an admixture. This paper outlines the findings of a study that looked at the physical characteristics of fresh and hardened concrete made with Portland pozzolanic cement CEM II/B-P blended with cassava flour up to 5% by weight of cement. A low water/binder ratio of 0.35 was used together with a carboxylate-based superplasticizing admixture to produce high strength. In fresh-state concrete, the initial and final setting times, soundness, and consistency were found to increase with increased cassava flour content, whereas the compacting factor and slump were observed to decrease. In the hardened state, compressive strengths were determined at 3, 7, 14, 28, 56, and 90 days, while split tensile and flexural strengths were investigated at 28 days. Similarly, dry density and porosity were also investigated at 28 days. Water absorption was also studied as a potential indicator of durability in hardened concrete. Scanning electron microscopy characterization of cassava flour revealed porous particles of irregular shape. On the other hand, X-ray diffraction imaging showed that the primary chemicals in cassava flour are silicon dioxide (50%), calcium oxide (17%), and aluminium oxide (7%). All of the mixes that incorporated cassava flour were stronger than the control mix, with the 3% cassava flour combination producing the best results. Doi: 10.28991/CEJ-2022-08-12-015 Full Text: PD

    Understanding the potential impact of different drug properties on SARS-CoV-2 transmission and disease burden : a modelling analysis

    Get PDF
    Q1Q1Background The unprecedented public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. Methods and Findings develop a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care to explore the potential public-health impact of a range of different potential therapeutics, under a range of different scenarios varying: i) healthcare capacity, ii) epidemic trajectories; and iii) drug efficacy in the absence of supportive care. In each case, the outcome of interest was the number of COVID-19 deaths averted in scenarios with the therapeutic compared to scenarios without. We find the impact of drugs like dexamethasone (which are delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in highincome countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics. Conclusions There is a global asymmetry in who is likely to benefit from advances in the treatment of COVID-19 to date, which have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics that can feasibly be delivered to those earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priorityRevista Internacional - Indexad

    HIV partner services in Kenya: a cost and budget impact analysis study

    No full text
    Abstract Background The elicitation of contact information, notification and testing of sex partners of HIV infected patients (aPS), is an effective HIV testing strategy in low-income settings but may not necessarily be affordable. We applied WHO guidelines and the International Society for Pharmaco-economics and Outcomes Research (ISPOR) guidelines to conduct cost and budget impact analyses, respectively, of aPS compared to current practice of HIV testing services (HTS) in Kisumu County, Kenya. Methods Using study data and time motion studies, we constructed an Excel-based tool to estimate costs and the budget impact of aPS. Cost data were collected from selected facilities in Kisumu County. We report the annual total and unit costs of HTS, incremental total and unit costs for aPS, and the budget impact of scaling up aPS over a 5-year horizon. We also considered a task-shifted scenario that used community health workers (CHWs) rather than facility based health workers and conducted sensitivity analyses assuming different rates of scale up of aPS. Results The average unit costs for HIV testing among HIV-infected index clients was US25.36perclientandUS 25.36 per client and US 17.86 per client using nurses and CHWs, respectively. The average incremental costs for providing enhanced aPS in Kisumu County were US1,092,161andUS 1,092,161 and US 753,547 per year, using nurses and CHWs, respectively. The average incremental cost of scaling up aPS over a five period was 45% higher when using nurses compared to using CHWs (US5,460,837andUS 5,460,837 and US 3,767,738 respectively). Over the five years, the upper-bound budget impact of nurse-model was US1,767,863,63 1,767,863, 63% and 35% of which were accounted for by aPS costs and ART costs, respectively. The CHW model incurred an upper-bound incremental cost of US 1,258,854, which was 71.2% lower than the nurse-based model. The budget impact was sensitive to the level of aPS coverage and ranged from US28,547for30 28,547 for 30% coverage using CHWs in 2014 to US 1,267,603 for 80% coverage using nurses in 2018. Conclusion Scaling aPS using nurses has minimal budget impact but not cost-saving over a five-year period. Targeting aPS to newly-diagnosed index cases and task-shifting to community health workers is recommended
    corecore