183 research outputs found

    Hydrogen at the rooftop: Compact CPV-hydrogen system to convert sunlight to hydrogen

    Get PDF
    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWhe/kgH2 has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the syste

    Energy distribution function based universal adsorption isotherm model for all types of isotherm

    Get PDF
    Based upon the adsorbate-adsorbent interactions due to pore size distribution and surface heterogeneity, as characterized by the adsorption isotherms, the adsorption phenomenon has many industrial and environmental applications. These adsorption isotherms are very important to define the information related to the equilibrium uptake of adsorbate-adsorbent pair. Due to the presence of different energy distribution of adsorption sites, pore size distribution, surface area availability and surface heterogeneity, of each of the adsorbent-adsorbate pair, these isotherms are categorized into six types by the International Union of Pure and Applied Chemistry and so far, in the literature, there is no generalized adsorption isotherm model available that can define and predict the behavior of all adsorption isotherm types. In this study, a universal adsorption isotherm model is developed based upon the energy distribution function of the available adsorption sites and the pore size. The proposed model is able to define all adsorption isotherm characteristics, irrespective of their multi- or monolayer formations and micro- or meso-pore distribution

    A multi evaporator desalination system operated with thermocline energy for future sustainability

    Get PDF
    All existing commercial seawater desalination processes, i.e. thermally-driven and membrane-based reverse osmosis (RO), are operated with universal performance ratios (UPR) varying up to 105, whilst the UPR for an ideal or thermodynamic limit (TL) of desalination is at 828. Despite slightly better UPRs for the RO plants, all practical desalination plants available, hitherto, operate at only less than 12% of the TL, rendering them highly energy intensive and unsustainable for future sustainability. More innovative desalination methods must be sought to meet the needs of future sustainable desalination and these methods should attain an upper UPR bound of about 25 to 30% of the TL. In this paper, we examined the efficacy of a multi-effect distillation (MED) system operated with thermocline energy from the sea; a proven desalination technology that can exploit the narrow temperature gradient of 20 °C all year round created between the warm surface seawater and the cold-seawater at depths of about 300–600 m. Such a seawater thermocline (ST)-driven MED system, simply called the ST-MED process, has the potential to achieve up to 2 folds improvement in desalination efficiency over the existing methods, attaining about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the ST-MED is truly a “green desalination” method of low global warming potential, best suited for tropical coastal shores having bathymetry depths of 300 m or more

    Energy-water-environment nexus underpinning future desalination sustainability

    Get PDF
    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2 °C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle's hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment

    Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    Get PDF
    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development

    Approaches to Energy Efficiency in Air conditioning: Innovative processes and thermodynamics

    Get PDF
    Air conditioning in buildings has transformed our human lives greatly with work efficiency in commercial buildings and improved lifestyle in all weather. However, these improvements are accompanied with the negative effects from the emissions of greenhouse gases (GHG), both directly via refrigerant emissions and indirectly through electricity generation by the burning of fossil fuels. Although there were significant improvements in the efficacy of chillers since 2000, the kW/Ron of chillers for cooling for electrically driven DCS have reached an asymptotic level of 0.85±0.03 kW/Rton for the tropics and a 20% higher for the hot and dry arid climate. The levelling-off phenomenon of chillers' energy efficiency is attributed the improvements limits exploited from the efficacy of compressor and refrigerant technologies. Thus, an out-of-box solution, such as the decoupling of latent to sensible cooling in the dehumidification cum the indirect evaporative coolers (DH-IEC) to improve energy efficiency, It is projected that a quantum jump of 0.5 kWh/m3 or less is urgently needed for future sustainable cooling. In this paper, we adopted a top-down approach in evaluating the upper-bound energy savings of an economy if one were to employ the innovative DH-IEC cycle is assumed to be applied to the Singapore city state is highlighted with respect to the savings in the primary energy, emission of CO2 and the water savings of up to 40 % can be potentially achieved

    An exergy approach to efficiency evaluation of desalination

    Get PDF
    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to

    An innovative pressure swing adsorption cycle

    Get PDF
    Over the last century, fresh water and cooling demand have been increased tremendously due to improved living standard, industrial and economic development. The conventional air-conditioning and refrigeration processes consume 15% of total global electricity and it is expected to increase any fold due to harsh weather conditions. In terms of fresh water supplies, the current 38 billion m3 per year desalination capacity is projected to increase to 54 billion m3 per year by 2030, 40% more compared to 2016. The current business as usual trend of cooling and desalination is not sustainable due to high energy consumption and CO2 emissions. In contrast, the adsorption (AD) cycle operate at low-grade waste heat or renewable energy and produce fresh water and cooling simultaneously. The major bottleneck of conventional thermally driven AD cycle is its large foot print and capital cost due to complex packed bed arrangements. We proposed pressure swing adsorption cycle (PSAD) that can utilize low-pressure steam (2-5 bar) for regeneration using thermal vapor compressor (TVC). The proposed system has best thermodynamic synergy with CCGT plants where low-pressure bleed steam can be utilized more efficiently to produce cooling and water. In this paper, a preliminary experimental investigation on PSAD has been presented. It is successfully demonstrated that 2 bar primary steam can regenerate silica gel at less then 0.5 kPa through TVC with compression ratio 3-4 and entrainment ratio around 1-1.5. The discharge steam can be re-utilized to operate the desalination cycle, maximizing the bleed steam exergy. The proposed system will not only reduce footprint but also CAPEX and OPEX due to simple design and operation

    A Universal Theoretical Framework in Material Characterization for Tailored Porous Surface Design

    Get PDF
    The distinct interaction of adsorbate-adsorbent pair is attributed to the characteristics of heterogeneous surface and structure of porous materials. In material science, the porous structure is modified in response to certain applications. Backed by the chemical recipes, such conventional approach rely on the material characterization techniques to verify the resultant porous structure and its interaction with the adsorbate molecules. Such a practice is best assisted by a theoretical approach that can pre-define the required heterogeneous structure of porous surfaces and its role in selective adsorbate-adsorbent interaction, to facilitate material scientists for the synthesis of only those energy sites which can enhance or tailor its responses for a certain application or target. It has been reported here that the understanding of porous structure in terms of energy sites and their distribution, which controls the adsorbate-adsorbent interaction, is the key for porous surface engineering. Understanding of such porous surface characteristics empower the scientists to alter kinetics and thermodynamics of material according to the ‘sweet spots’ of an application. Therefore, a theoretical framework, to express the energy sites and their distribution over the porous heterogeneous surface, is demonstrated here as a prerequisite criterion for porous material development and characterization

    Design of Industrial Falling Film Evaporators

    Get PDF
    The high performance evaporators are important for process industries such as food, desalination and refineries. The falling film evaporators have many advantages over flooded and vertical tubes that make them best candidate for processes industries application. The heat transfer area is the key parameter in designing of an evaporator and many correlations are available to estimate the size of tube bundle. Unfortunately, most of the correlation is available only for pure water and above 322 K saturation temperatures. Out of these conditions, the areas are designed by the extrapolation of existing correlations. We demonstrated that the actual heat transfer values are 2–3-fold higher at lower temperature and hence simple extrapolated estimation leads to inefficient and high capital cost design. We proposed an accurate heat transfer correlation for falling film evaporators that can capture both, low temperature evaporation and salt concentration effectively. It is also embedded with unique bubble-assisted evaporation parameter that can be only observed at low temperature and it enhances the heat transfer. The proposed correlation is applicable from 280 to 305 K saturation temperatures and feed water concentration ranges from 35,000 to 95,000 ppm. The uncertainty of measured data is less than 5% and RMS of regressed data is 3.5%. In this chapter, first part summarized the all available correlations and their limitations. In second part, falling film evaporation heat transfer coefficient (FFHTC) is proposed and model is developed. In the last part, experimentation is conducted and FFHTC developed and compared with conventional correlations
    • 

    corecore