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This paper presents an evaluation process efficiency based on the consumption of primary energy

for all types of practical desalination methods available hitherto. The conventional performance

ratio has, thus far, been defined with respect to the consumption of derived energy, such as the

electricity or steam, which are susceptible to the conversion losses of power plants and boilers that

burned the input primary fuels. As derived energies are usually expressed by the units, either kWh

or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately.

In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desali-

nation plants. In today’s combined production of electricity and desalinated water, accomplished

with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently

in a temperature cascaded manner. By discerning the exergy destruction successively in the

turbines and desalination processes, the relative contribution of primary energy to the processes

can be accurately apportioned to the input primary energy. Although efficiency is not a law of

thermodynamics, however, a common platform for expressing the figures of merit explicit to the

efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor

up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to

aspire to. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982628]

Water, energy, and environment are inextricably linked

when desalting the seawater. As more potable water is pro-

duced, more energy is consumed and concomitantly more

CO2 gases are emitted. In the water-stressed countries of the

world, the availability of these resources at affordable prices

strengthened the growth rate of their economy. Water is per-

vasive to all energy production sectors, such as fossil fuel

processing, power generation, and irrigation of feedstock

crops for biofuels. The practical processes of seawater

desalination available hitherto, namely, the seawater

membrane-based reverse osmosis (SWRO), thermally driven

multi-stage flashing (MSF), and the multi-effect distillation

(MED) methods,1–6 are known to be energy intensive when

compared to the ideal or thermodynamic limit (TL) of desali-

nation.7–10 The TL is an ideal concept of desalination with

no entropy generation, and depending on the source of sea-

water, its salinity may vary from 3.0% to 4.5% by weight. For

the Middle East and North African (MENA) countries, the spe-

cific energy consumption is calculated to be in the range of 0.7

to 0.85 kWh/m3, and the TL that has a minimum work of nom-

inal seawater at 25 �C is about 0.78 kWhpe/m
3.11–20

The existing desalination plants efficiency, performance

ratio (PR), is defined as a ratio of the equivalent evaporative

energy of distillate to the energy input, as presented in

Equation (1). The conventional PR is based on derived ener-

gies such as electricity and thermal

PR ¼ hfg

3:6
kWhelec

m3

� �
þ kWhther

m3

� �� � ; (1)

where hfg is the latent heat of evaporation of potable water in

kJ/kg, kWhelec/m
3 and kWhther/m

3 are the derived energies,

while the constant 3.6 is the unit conversion factor. This con-

ventional PR may appear reasonable in industry for compar-

ing the desalination processes, but it has inherently two

weaknesses: First, the electricity by desalination processes is

susceptible to the overall power plant efficiency, 35%–50%.

Second, the units of derived thermal energy, kWh, are unable

to differentiate the quality of energy consumed by the

cascaded processes. Considering all derived energies, as

thermodynamically the same in PR calculations, it can be

deceptive in comparing assorted desalination methods. This

misconception is commonly observed in cogeneration plants

where two or more useful effects are produced simulta-

neously where different grades of derived energies are mea-

sured as kWh.21–29 As today’s desalination plants are aptly

designed with the concept of cogeneration to judiciously dis-

tribute the exergy of input primary fuel between the com-

bined cycle gas turbines (CCGTs) and steam turbines and

the thermally driven multi-effect desalination (MED) pro-

cesses, it is crucial to distinguish the relative exergy destruc-

tion incurred by each process. Thus, the measured derived

energy of a process can then be rightfully apportioned with

respect to the input primary energy.

The omission of the grade of energy consumed by the

desalination processes can be attributed historically to the

primitive design arrangements of a single-purpose built

plant, where neither the energy nor exergy analysis makes

any difference to the primary energy apportionment. For

example, the electricity is generated from a simple power

plant or the steam is produced by a burning fuel directly in a

boiler: A one-to-one relationship between the input and the

useful output negates the need for an accurate exergy

approach. Another example is a chiller for providing the
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cooling effect, as shown in Figure 1, where it delineates the

detailed energy and exergy flows by considering a unit

amount of electricity produced from a dedicated power

plant.30,31 The electricity is then used to operate a

refrigerant-based chiller of nominal Coefficient of

Performance (COP) for useful cooling. Both enthalpy and

exergy analyses yielded the same overall conversion factor

(CF) of about 47%.

It is emphasized that when the figure of merit, PR, is

applied to desalination processes within a cogeneration-type

CCGT power plant, the energy consumption should be

expressed in terms of the primary energy, providing a level

platform for the cross comparison of assorted desalination

methods. To mark the distinction between the conventional

PR and the primary energy based PR, the latter is termed uni-

versal PR or UPR in short. The accurate conversion of

derived energy to primary energy consumption is the key for

having an equitable platform for comparing all desalination

methods and the fuel cost apportionment. Furthermore, it

subsumes all associated conversion losses and the exergy

destruction, and hence, an exergetic analysis is the most

appropriate approach to calculate these conversion factors.

Besides the UPR, an alternative definition for the efficacy of

desalination is also given, that is, a ratio of potable water

product to the primary energy input derived from the desali-

nation process or plant that encompasses all losses incurred

by all desalinating processes or cycles.

In today’s optimally designed cogeneration plants that

produce two or more useful output, the thermodynamic-

rigorous exergy approach has to be considered for the differ-

entiation of the quality or grade of energy use by the

temperature-cascaded processes.32–36 The exergy destruction

analysis accurately apportions the amount of primary energy

consumed by the major components of the plant. This is

demonstrated by considering a cogeneration of power

(594 MW electricity from gas and steam turbines) and desali-

nation (2813 m3/h), as shown schematically in Figure 2. The

major components are arranged synergistically where the gas

turbine (GT) generators are operated with high exergy gases,

while both the steam turbines and the thermally driven desa-

lination processes are powered by the recovered exergy from

the GT exhaust gases. Table I outlines the inlet and outlet

pressures, temperatures, and flow rates, while the respective

enthalpy and entropy can be readily computed to provide the

exergy destruction analyses across all key components. The

distribution of exergy destruction of combined-cycle gas tur-

bines (CCGTs) is 75% and the heat recovery steam generator

(HRSG) has the remaining 25%. The latter exergy is con-

verted into steam which operates the multi-stages steam tur-

bines (ST), the steam condenser, and the multi-effect

distillation (MED).

Approximately 20 6 1.5% of the available exergy is con-

verted into steam of high pressure and temperature, which is

then supplied to the steam turbines for further power produc-

tion and the thermally driven MED desalination processes.

FIG. 1. An example of a single useful-effect output power plant for cooling

application. It is observed that the same conversion factor of 0.47 can be

attained from either the enthalpy or exergy methods.

FIG. 2. An example of a cogeneration plant with a nominal electricity and

water production of 594 MW and 2813 m3/h, respectively, and the processes

are operated in a temperature-cascade manner.

TABLE I. The thermodynamic states at inlet and outlet streams of the major

components (denoted by the state points) in the cogeneration plant of Figure 2.

State points of

Figure 2 _m (kg/s) T (K) P (bar) h (kJ/kg) s (kJ/kg K)

1 974.95 305 1 305.64 1.718

2 974.95 592 8 599.3 2.391

3 1170.25 1470 8 1559.1 3.42

4 1170.25 911 1.2 945 2.86

5 244.40 833 113 3512.07 6.7

6 244.40 653 28 3343 7.08

7 244.40 833 28 3590 7.41

a 4.17 673 17 3250 7.2

8 240.23 583 10 3240 7.35

b 70.36 473 2.7 2865 7.4

Input to 2nd LP-ST 169.87 473 2.7 2765 7.4

9 169.87 319 0.1 2690 8.165

TABLE II. Primary fuel proportion utilization by cogeneration components

based on exergy and enthalpy analysis.

Process

Conventional

energy

method (%)

Proposed

exergy

method (%)

Over/lower

charging

(%)

Gas turbines (GT including

combustor, air compressor)

43.67 73.17 �40.32

Heat recovery steam generator

(HRSG)

56.33 26.83

Steam turbines (HP, MP

and LP turbines)

39.58 23.11 71.2

MED desalination 16.75 3.72 350.8

184101-2 Ng et al. Appl. Phys. Lett. 110, 184101 (2017)



Only less than 2 6 0.5% of the available exergy is purged to

the ambient as exhaust of combustion products. Despite the

lower grade of the steam from the HRSG, the multi-stage

steam turbines seem to be efficient in generating 40% of the

total electricity production. Only a small fraction of low-

grade steam from the last or low pressure stage of steam tur-

bines is bled-off to operate the MED for seawater desalina-

tion. Based on the thermodynamic states of the key

components of cogeneration design, the exergy destruction

calculations accurately apportioned the available work of pri-

mary energy input to the derived energies, determining the

conversion factors (ui) between the electricity, thermal

energy, etc., and the exergy input. Table II summarizes the

TABLE III. The average conversion factors for derived energy (such as

electricity and thermal input) to primary energy requirement of MSF and

MED processes.

Type of derived energy Conversion factors

Electricity (u1Þ 1/0.47

Thermal energy input at a supplied temperature …

MED at a TBT ¼ 60 �C (u2
ðTBT¼60CÞÞ 0.038

MSF at a TBT ¼ 110 �C (u2
ðTBT¼110 CÞÞ 0.054

TABLE IV. The conversion of derived energy to primary energy using published data found in literature.46–57

Types of desalination

method.

Derived energy Conversion to primary energy (kWhpe/m
3)

Total primary

energy (kWhpe/m
3)

Performance

ratio (UPR)

% of thermodynamic

limit (TL)

Electricity

(kWhelec/m
3)

Thermal

(kWhther/m
3)

Electricity

(u1)

Thermal (u2) inclusive of

weighted condenser losses

SWRO(83) (Ref. 46) 7.58 0 16.17 0.00 16.17 39.96 4.83

SWRO(86a) (Ref. 46) 6.32 0 13.48 0.00 13.48 47.93 5.79

SWRO(86b) (Ref. 57) 7.93 0 16.92 0.00 16.92 38.20 4.61

MED(89) (Ref. 47) 5 65.93 10.67 1.57 12.24 52.75 6.37

MSF(89) (Ref. 48) 4.3 80.76 9.17 4.36 13.53 47.74 5.77

SWRO(89) (Ref. 57) 6.11 0 13.03 0.00 13.03 49.57 5.99

MED(90) (Ref. 49) 2.35 104 5.01 2.5 7.50 86.09 10.4

SWRO(90) (Ref. 49) 5.8 0 12.37 0.00 12.37 52.22 6.31

SWRO(93) (Ref. 46) 5.4 0 11.52 0.00 11.52 56.09 6.77

MED(94) (Ref. 47) 2.9 68.74 6.17 1.65 7.82 82.46 9.96

MSF(97) (Ref. 48) 4.2 80.76 8.94 4.04 12.98 48.51 5.86

SWRO(97) (Ref. 46) 5.02 0 10.71 0.00 10.71 60.34 7.29

SWRO(98a) (Ref. 56) 5.85 0 12.48 0.00 12.48 51.78 6.25

SWRO(98b) (Ref. 57) 5.56 0 11.86 0.00 11.86 54.48 6.58

SWRO(99) (Ref. 46) 4.51 0 9.62 0.00 9.62 67.16 8.11

SWRO(00) (Ref. 57) 7.42 0 15.83 0.00 15.83 40.82 4.93

MED(01) (Ref. 50) 2.3 71.67 4.89 1.72 6.61 97.71 11.78

MSF(01a) (Ref. 48) 4.2 99.4 8.93 4.97 14.32 45.10 5.45

MSF(01b) (Ref. 50) 3.6 80.56 7.66 4.03 12.00 53.71 6.49

MSF(01c) (Ref. 48) 3.5 80.76 7.45 4.04 11.50 54.63 6.60

SWRO(01a) (Ref. 50) 4.2 0 8.96 0.00 8.96 72.12 8.71

SWRO(01b) (Ref. 46) 4.43 0 9.45 0.00 9.45 68.37 8.26

SWRO(03) (Ref. 46) 4.3 0 9.17 0.00 9.17 70.44 8.51

MED(04) (Ref. 51) 3.28 76.1 7.00 1.83 8.83 73.23 8.84

MSF(04) (Ref. 51) 3.98 76.1 8.49 3.81 12.30 51.28 6.19

SWRO(04) (Ref. 51) 4.9 0 10.45 0.00 10.45 61.82 7.47

SWRO(05) (Ref. 46) 3.97 0 8.47 0.00 8.47 76.30 9.21

MED(07) (Ref. 52) 2.3 75 4.90 1.80 6.70 83.30 11.64

MSF(07) (Ref. 52) 3 80 6.38 4.00 10.38 60.28 7.28

SWRO(07a) (Ref. 52) 5 0 10.67 0.00 10.67 60.58 7.32

SWRO(07b) (Ref. 56) 4.5 0 9.60 0.00 9.60 67.31 8.13

MED(08) (Ref. 52) 2 80.6 4.25 1.93 6.20 104.20 12.58

MSF(08) (Ref. 52) 3 80.6 6.38 4.03 10.41 60.09 7.26

SWRO(08) (Ref. 52) 5.5 0 11.73 0.00 11.73 55.07 6.65

SWRO(09) (Ref. 46) 3.88 0 8.28 0.00 8.28 78.07 9.43

SWRO(12) (Ref. 46) 3.44 0 7.34 0.00 7.34 88.05 10.63

MED(16a) (Ref. 54) 2.5 108 5.32 2.59 7.91 81.53 9.85

MED(16b) (Ref. 55) 1.82 63.97 3.87 1.54 5.41 119.26 12.36

MED(16c) (Ref. 55) 1.68 56.18 3.57 2113 3.57 131.01 15.82

MSF(16) (Ref. 55) 4 56.18 8.51 2.81 11.32 55.86 6.75

SWRO(16a) (Ref. 46) 2.96 0 6.31 0.00 6.31 102.33 12.36

SWRO(16b) (Ref. 54) 5 0 10.67 0.00 10.67 60.58 7.32

Average 4.38 85.5 … … 10.67 … …

184101-3 Ng et al. Appl. Phys. Lett. 110, 184101 (2017)



primary fuel proportion utilization by cogeneration compo-

nents based on exergy and energy analysis.

With the relative contributions of exergy destruction in

cogeneration processes accurately determined, the amount of

primary energy consumption attributed at an exergy or top-

brine temperature (TBT) level to a process can now be read-

ily computed. Using such a methodology, the universal per-

formance ratio (UPR) for any desalination process, as

presented in Eq. (2), can be determined,37 i.e.,

UPR¼ hfg

3:6
X2

i¼1

u1

kWhelec

m3

� �
þu2

TBTð Þ kWhther

m3

� �� � ; (2)

where u1 and u2
ðTBTÞ are the conversion factors needed for

converting the derived electricity and thermal input at a

given top-brine temperature (TBT) to the respective primary

energy. The hfg is the latent heat of potable water produced,

i.e., 2326 kJ/kg. Most of the literatures available is based on

the conventional energetic approach for performance evalua-

tion.38–45 Over 20 published articles on CCGT power and

desalination are analyzed to find average conversion factors

u1, u2
ðTBTÞ as delineated in Table III. Based on the primary

energy consumption, the detailed UPR values and the alter-

native figure of merit, m3/kWhpe, are determined for the pub-

lished data of desalination plants, as shown in Table IV.

Chronologically over the last three decades, the trend of

UPR values is increasing steadily from a low value of 40 to a

high value of 113, as shown in Figure 3. The direct figure of

merit for desalination, i.e., the m3/kWhpe is also presented on

the secondary axis of Figure 3. It can be seen that the MED

(11.1% TL) has slightly better efficiency than SWRO (7.45%

of TL) and MSF (6.4% of TL) methods. Despite a gradual ris-

ing desalination efficiency of all desalination methods over

the past 3 decades, the desalination efficiencies are merely

hovering less than 15% of the TL where the TL has a UPR*

of 828 or an ideal production of 1.282 m3/kWhpe. From these

comparisons, all scientists and engineers of the desalination

community should not rest their laurels as their existing desa-

lination efficiency is far from the TL. Much effort to improve

desalination efficiency is urgently needed so as to approach

the goals of future sustainable desalination. Although nature

is always harsh to mankind, our experiences in the heat

engine cycles have demonstrated that it is plausible to reach

up to 30% of the ideal limit even for future desalination. We

opine that the opportunity for improving efficiency of desalt-

ing processes is good, both in the materials development and

excellence in thermodynamic synergy for the thermally

driven hybrid cycles, for example, the MEDAD cycle as

shown in Figure 3.

Recent publications appearing in the literature58–71 have

made great strike towards improving the efficacy of practical

desalination methods. In one example, the hybridization of the

conventional MED method with the adsorption desalination

(AD) cycles has been extensively investigated at the King

Abdullah University of Science and Technology. The AD

cycle72–77 is attached to the bottom-brine stage of the MED,

acting as a vapor compressor to lower the bottom-brine tem-

perature of MED. Owing to the excellent thermodynamic syn-

ergy between these cycles, the water production yield of the

MED stages is almost double while the thermal heat input to

the MED remains unchanged. The additional thermal heat

input is the regeneration heat required for desorption of the

adsorbent that facilitated the batch-operation of AD cycles.

Our experiments show a quantum jump in the figure of merits

for efficiency where the universal performances ratio (UPR)

attained by the MEDþAD cycles, or MEDAD in short, has

increased from 113 to 175, as denoted by the red-colored cross

symbol of Figure 3. This demonstrates that a “quantum jump”

in the UPR of desalination is only possible when there is a

methodology shift in the desalination technology. Otherwise,

the improvement in desalination efficiency can merely be of a

marginal increase, as evident in the gradual slope improve-

ment, over a three decade period, of the mentioned methods of

Figure 3.

By specifying the primary energy consumption in all

desalination methods, it presents a whole fresh paradigm for

efficiency comparison. The exergy destruction analysis for

desalination processes is deemed more accurate and fair, as it

subsumed the conversion losses as well as the exergy destruc-

tion needed by the processes in a cogeneration configuration.

The revised universal performance ratio (UPR) or the alterna-

tive m3/kWhpe revealed that the existing efficiency of desali-

nation methods is not better than 15% of the ideal limit of

desalination. The challenge now is to seek a higher efficiency

goal for future sustainable desalination, typically up to 30%

of the thermodynamic limit or an equivalent target of 0.3 m3/

kWhpe. Such an efficiency target can be achieved through

either the hybridization between existing desalination pro-

cesses to achieve excellent thermodynamic synergy between

them, as demonstrated by the MEDAD processes, or to seek a

quantum improvement in the realm of high permeable flux of

membrane materials. Accumulated experiences of hybrid

design of desalination processes have confirmed a plausible

focus direction for achieving sustainable desalination.

The authors would like to thank the King Abdullah

University of Science and Technology (KAUST) (CCF3

Project No: FCC/1/1971–03-01) and Desalination

Technology Research Institute (DTRI) of SWCC.
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