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Abstract
Based upon the adsorbate–adsorbent interactions due to pore size distribution and surface heterogeneity,
as characterized by the adsorption isotherms, the adsorption phenomenon has many industrial and envir-
onmental applications. These adsorption isotherms are very important to define the information related
to the equilibrium uptake of adsorbate–adsorbent pair. Due to the presence of different energy distribu-
tion of adsorption sites, pore size distribution, surface area availability and surface heterogeneity, of each
of the adsorbent–adsorbate pair, these isotherms are categorized into six types by the International Union
of Pure and Applied Chemistry and so far, in the literature, there is no generalized adsorption isotherm
model available that can define and predict the behavior of all adsorption isotherm types. In this study, a
universal adsorption isotherm model is developed based upon the energy distribution function of the
available adsorption sites and the pore size. The proposed model is able to define all adsorption isotherm
characteristics, irrespective of their multi- or monolayer formations and micro- or meso-pore distribution.
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1 INTRODUCTION

Adsorption, of gas molecules onto a porous surface, is a very
important phenomenon related to transformation and transport
processes in the environment. Removal of toxics from air, espe-
cially in current environmental issues [1–6], wastewater treat-
ment, purification of potable water, desalination of seawater [7–9]
and gas storage [10–12]; adsorption process [13] has many indus-
trial and environmental applications [14], based upon the adsorb-
ate–adsorbent interaction. In physical adsorption, the adsorbate
molecules are accommodated in mono- or multilayer formations,
on the surface of the porous adsorbent by providing them a favor-
able energy state. The porous structure of adsorbents differs in
terms of pore size, i.e. macropores, micropores and mesopores
[15], causing different levels of surface heterogeneity and energy
sites distribution for each pore size distribution (Figure 1). These
pore size distribution and surface heterogeneity cause a unique
interaction of each adsorbate–adsorbent pair, characterized by
adsorption isotherms. The adsorption isotherms provide all

information needed to study the adsorption equilibrium of adsorb-
ate–adsorbent pair, while the adsorption model is the theory of
the adsorption equilibrium. The International Union of Pure and
Applied Chemistry (IUPAC) has categorized adsorption isotherms
in six types, based upon the isotherm shape of adsorbate–adsorb-
ent pairs. However, so far there is no universal adsorption model
that can describe and fit the adsorption isotherms of all six types.

In literature, extensive work has been done for adsorption
isotherm modeling. The isotherm models which are usable in
the Henry’s region, i.e. Henry, Tόth and Langmuir equa-
tions [16–18], do not remain valid in the high pressure range.
Tόth proposed an isotherm model as the power function of the
relation between adsorption potential of adsorbent surface and
the adsorption uptake. Jaroniec and Marczewski’s model [19–
22] also followed Tόth concept of using power function [23].
However, later Tόth model was found to be limited as it failed
to explain the isotherm transition from Henry to saturation
region. Similarly, the isotherms models performing well in the
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high pressure range near saturation, i.e. DA, and Dubinin and
Radushkievich (DR) equation, fail to be consistent with low
pressure experimental data [24–27]. Chakraborty and Sun pro-
posed a modified Langmuir model, formulated in terms of
Fermi–Dirac distribution [28]. Although, the proposed model
showed significant consistency with Type-I, Type-II, Type-III
and Type-V isotherms, but unable to describe the Type-IV.
Khalfaousi et al. proposed separate analytical models for each
of the five isotherms, in form of the modified Brunauer–
Emmett–Teller isotherm model [29] using grand canonical
ensemble. However, he also could not propose a universal mod-
el and theory describing all isotherm types.

Ross and Olivier proposed the theory of homotattic patch
approximation [30] to divide the heterogeneous surface of
adsorbent into small homogeneous patches, with known energy
distribution function of adsorption energy sites. Frendlich [31],
Sips [32, 33], Fowler [34] and Jovanovich [35] models also fol-
lowed homotattic patch approximation and showed great agree-
ment with most of the isotherm types, but none of the studies
[36–38] able to unify the theory to model all types of adsorp-
tion isotherm. For the first time, in this paper, a universal
adsorption model is proposed based upon the theory of loca-
lized adsorption, by also utilizing the homotattic patch approxi-
mation, in monolayer formation and its extension to multilayer
formation, but with probability or fraction term of total surface
coverage by stronger sites and heterogeneity factor, to predict
all isotherms. The localized adsorption is defined as a function
of energy distribution of adsorption sites.

2 UNIVERSAL ADSORPTION ISOTHERM
MODEL

The proposed theory behind the developed universal adsorption
isotherm model is based upon the homotattic patch approximation

as a function of the energy distribution of the adsorption sites,
with monolayer coverage, which is then further proposed to be the
fraction of the overall surface coverage among different pore sizes
or multi-layers formation. As per the approximation, the heteroge-
neous surface of adsorbent is considered as the agglomeration of
multiple homogeneous patches. Each homogeneous patch consists
of multiple adsorption sites of same energy level and the size of
homogeneous patches is defined in terms of the energy distribu-
tion function of the adsorption energy sites. Higher the probability
of an adsorption site defines the higher localized adsorption uptake
in monolayer coverage. However, this energy distribution function
varies for different pore size categories, i.e. micropore and macro-
or mesopores, and also for the multilayer formation. Therefore, a
probability factor is introduced to define the fraction of the total
surface coverage or the energy distribution, associated with each
pore size or adsorbate layer, i.e. in case of multilayer formations.

If θ(ε) is the localized adsorption uptake of the homoge-
neous patch, as function of the adsorption energy site ‘ε’, and
X(ε) denotes the distribution function of the energy sites ‘ε’,
then the total adsorption uptake of heterogeneous surface with
homotattic patch approximation, is given by integral
equation (1).

∫θ θ ε ε ε= ( ( ) × ( )) ( )
∞

X d 1t
0

The ratio of the local available adsorption sites ‘si’ to the
total available adsorption sites ‘So’ is proportional to the energy
distribution function X(ε), and the maximum value of this ratio
will be equal to unity over the entire adsorption surface.

ε ε ε( ) = ( ) ( )s
S

X d 2i

o

However, from Langmuir isotherm model and Condensation
Approximation.

Figure 1. Adsorption on complex heterogeneous porous surface.
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The symmetrical Guassian function is approximated to
represent the distribution of the homogeneous adsorption
energy sites over the heterogeneous. Then, by solving the inte-
gral of equation (4), we can get the universal adsorption iso-
therm model as:
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where ps represents the saturation pressure at the maximum
possible uptake by an adsorbent. While p and T represent the
adsorption pressure and temperature, respectively. However, R
is the general gas constant. Rest of the parameters are fitted
with the adsorption isotherm experimental data as discussed in
following Section.

3 RESULTS AND DISCUSSION

In order to demonstrate the applicability of the proposed uni-
versal adsorption isotherm model, the behavior of all types of
the IUPAC isotherms is simulated using universal adsorption
isotherm model. By using the obtained values of the adsorption
energy sites and their corresponding probability, the experi-
mental isotherm data of all six types, obtained from the litera-
ture, is accurately simulated from the proposed model. Detailed
discussion regarding the use of universal adsorption isotherm
model to predict the isotherm behavior and corresponding
adsorption energy site distribution, is presented below for each
isotherm type.

3.1 Type-I
Figure 2 shows the experimental data for Silica Gel 3A and
water [39], adsorbent–adsorbate pair isotherms obtained at dif-
ferent temperature and pressure conditions, characterized as
Type-I isotherms. The adsorption isotherm data is fitted using
proposed universal adsorption isotherm model. The blue line
represents the data obtained from the universal adsorption iso-
therm model and the circular dots represents the experimental
data points.

From the isotherm results, if looked closely, it can be seen
that there is a small saturation step of adsorption uptake at the
lower concentration. After that, there is a rapid and major
increase in the adsorption uptake until the saturation limit.
This shows that instead of single group of adsorption sites, as

recommended by Langmuir model for Type-I isotherm, there
are two different levels of adsorption sites. One of them is
responsible for a small adsorption uptake at the lower concen-
tration. However, the other is responsible for the major uptake,
at higher concentration. In order to understand it further, the
energy distribution graph for the adsorption sites, using energy
distribution function and the regressed parameters, is plotted
along with the adsorption uptake and shown in Figure 2. As
depicted, two peaks represent the two levels of adsorption
energy sites availability.

3.2 Type-II
Unlike Type-I isotherm, there is no horizontal saturation trend
observed for Type-II isotherm. However, a rapid increase in the
uptake can be seen when the relative pressure approaches unity.
However, at lower pressure value, it exhibits similar trend of
monolayer formation, like Type-I isotherm, reaching to inter-
mediate saturation of adsorption surface. These two different
trends are because of different pore size availabilities across the
adsorption surface. The experimental data for Type-II isotherm
for poorly crystalline boehmite and water adsorbent–adsorbate
pair, obtained from [40] is shown in Figure 3. The experimental
isotherm data is regressed using proposed universal adsorption
isotherm model with two terms representing two different pore
size groups as shown by the blue line in Figure 3. A perfect
match experimental data and its trend is obtained by the pro-
posed model.

The energy distribution graph shows two peaks, one with
smaller value but larger width at higher energy value sites, and
the other one with higher peak value but smaller width at lower
energy value sites. At low concentration/pressure value, the
adsorption uptake starts after crossing the probability peak for
higher energy sites. However, it starts to flatten with drop in
the energy distribution probability. This represents the first half
of the adsorption uptake, that is similar to the Type-I isotherm.

Figure 2. Type-I adsorption isotherms experimental and prediction data.
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However, at higher pressure/concentration, the second pore
size group of low adsorption energy sites become available and
after crossing the peak probability energy site, a rapid rise in
the adsorption uptake can be seen, until the relative pressure
becomes unity.

3.3 Type-III
The Type-III isotherm propagates similar to the Type-II iso-
therm. However, it has rapid exponential increase in the
adsorption uptake at the start of increase in the pressure/
concentration. This continues until the relative pressure reaches
unity. The Type-III isotherm data is obtained from adsorbent–
adsorbate pair of green coconut pulp and water as described in
[41]. Based upon the proposed universal model with two prob-
ability terms, the regressed Type-III isotherms with experimen-
tal data point are shown in Figure 4, for different temperatures.

It can be seen that although there are two different sets of
energy sites, available for different pore sizes, but the difference
in their energy level is not very big. With the availability of
high energy level adsorption sites, a gradual increase in the
adsorption uptake can be seen with increase in the probability
value of energy site.

3.4 Type-IV
The Type-IV isotherm is the combination of Type-II and Type-I
isotherms. There is an intermediate saturation of adsorption
surface at the low pressure/concentration. However, at higher
concentration/pressure, the adsorption uptake again follows
horizontal saturation, like Type-I isotherm and unlike Type-II
which shows exponential increase in the uptake near saturation
pressure. This kind of behavior shows the formation of multi-
layer adsorption. The Type-IV isotherm behavior is shown by
the activated carbon and water pair [42]. The experimental data
for isotherm, obtained from, and the repressed adsorption
uptake obtained from proposed universal adsorption model, are
shown in Figure 5. A non-symmetrical single peak energy dis-
tribution graph for Type-IV isotherm shows the multilayer
formation, instead of twin peak energy distribution for different
sets of pore size.

3.5 Type-V
The Type-V isotherm follows Type-III isotherm trend at low
pressure/concentration, with exponential increase in the
adsorption uptake. However, at higher pressure/concentration,
there is gradual increase in the uptake, like Type-IV isotherm,
until pressure reaches saturation. The experimental data for
Type-V isotherm by Zeolite Z01 and water pair, obtained from
[39], which is regressed with two term of proposed universal
adsorption mode,l is shown in Figure 6. The higher uptake at
lower pressure/concentration can be depicted as the larger
probability of high energy adsorption sites. Like Type-III

Figure 3. Type-II adsorption isotherms experimental and prediction data.

Figure 4. Type-III adsorption isotherms experimental and prediction data. Figure 5. Type-IV adsorption isotherms experimental and prediction data.
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isotherm, there is slight increase in the adsorption update at the
start of pressure/concentration increase. After passing the peak
probability adsorption energy site, there is a sharp increase in
the adsorption uptake occur, which is due to larger availability
of adsorption sites as seen by the adsorbate molecules to be
adsorbed.

So, the proposed model theory not only describes the behav-
ior of the isotherm against pressure/concentration, but also
gives the insight of the adsorption uptake behavior against the
availability of the adsorption energy site. Due to energy distri-
bution curve, the proposed models help one to easily under-
stand the different categories of the defined isotherm, even for
adsorbent–refrigerant isotherms pairs [43–45], which also fol-
low the described isotherm types, as the adsorption uptake
clearly depends upon the availability and distribution of the
adsorption energy sites.

4 CONCLUSION

Based upon the classical approach of energy distribution func-
tion and homotattic patch approximation, the proposed univer-
sal adsorption isotherm model has been presented and verified
to predict the behavior of all types of the IUPAC adsorption
isotherms. This is the first time that any adsorption isotherm
model can capture the behavior of all isotherm types, i.e. from
monolayer to multilayer formation with different pore sizes.
This proposed model not only helps to predict the isotherm
values, but also gives insight of the certain isotherm types by
using the energy distribution curve of the adsorption energy
sites. This energy distribution curve helps to understand the
characteristic of certain isotherm types by giving the distribu-
tion and extent of availability of the adsorption energy site, and
their effect on the rate of adsorption uptake. The proposed
model is considered as a great achievement in generalizing the
adsorption phenomena for all kinds of adsorbent–adsorbate

pairs, based upon the distribution and availability of adsorption
energy sites over porous surface, which none of the current iso-
therm theories is able to define for all isotherm types. This
insight analysis will help to modify or create the required por-
ous structure, with certain adsorption surface characteristics, as
per certain application requirements for specific adsorbate.
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