36,058 research outputs found
Spacetime Foam, Holographic Principle, and Black Hole Quantum Computers
Spacetime foam, also known as quantum foam, has its origin in quantum
fluctuations of spacetime. Arguably it is the source of the holographic
principle, which severely limits how densely information can be packed in
space. Its physics is also intimately linked to that of black holes and
computation. In particular, the same underlying physics is shown to govern the
computational power of black hole quantum computers.Comment: 8 pages, LaTeX; Talk given by Jack Ng, in celebration of Paul
Frampton's 60th birthday, at the Coral Gables Conference (in Fort Lauderdale,
Florida on December 17, 2003). To appear in the Proceedings of the 2003 Coral
Gables Conferenc
From computation to black holes and space-time foam
We show that quantum mechanics and general relativity limit the speed
of a simple computer (such as a black hole) and its memory space
to \tilde{\nu}^2 I^{-1} \lsim t_P^{-2}, where is the Planck time.
We also show that the life-time of a simple clock and its precision are
similarly limited. These bounds and the holographic bound originate from the
same physics that governs the quantum fluctuations of space-time. We further
show that these physical bounds are realized for black holes, yielding the
correct Hawking black hole lifetime, and that space-time undergoes much larger
quantum fluctuations than conventional wisdom claims -- almost within range of
detection with modern gravitational-wave interferometers.Comment: A misidentification of computer speeds is corrected. Our results for
black hole computation now agree with those given by S. Lloyd. All other
conclusions remain unchange
Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways
Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those accounted for here for production of anthropogenic SOA. However, owing to differences in spatial distributions of sources and seasons of peak production, there are still regions in which aromatic SOA produced via the mechanisms identified here are predicted to contribute substantially to, and even dominate, the local SOA concentrations, such as outflow regions from North America and South East Asia during the wintertime, though total SOA concentrations there are small (~0.1 μg/m^³)
Electron-spectroscopic investigation of metal-insulator transition in Sr2Ru1-xTixO4 (x=0.0-0.6)
We investigate the nature and origin of the metal-insulator transition in
Sr2Ru1-xTixO4 as a function of increasing Ti content (x). Employing detailed
core, valence, and conduction band studies with x-ray and ultraviolet
photoelectron spectroscopies along with Bremsstrahlung isochromat spectroscopy,
it is shown that a hard gap opens up for Ti content greater than equal to 0.2,
while compositions with x<0.2 exhibit finite intensity at the Fermi energy.
This establishes that the metal-insulator transition in this homovalent
substituted series of compounds is driven by Coulomb interaction leading to the
formation of a Mott gap, in contrast to transitions driven by disorder effects
or band flling.Comment: Accepted for publication in Phys. Rev.
Effect of dead space on avalanche speed
The effects of dead space (the minimum distance travelled by a carrier before acquiring enough energy to impact ionize) on the current impulse response and bandwidth of an avalanche multiplication process are obtained from a numerical model that maintains a constant carrier velocity but allows for a random distribution of impact ionization path lengths. The results show that the main mechanism responsible for the increase in response time with dead space is the increase in the number of carrier groups, which qualitatively describes the length of multiplication chains. When the dead space is negligible, the bandwidth follows the behavior predicted by Emmons but decreases as dead space increase
Single Z' production at CLIC based on e^- gamma collisions
We analyze the potential of CLIC based on e- gamma collisions to search for
new gauge boson. Single Z' production at e-gamma colliders in two SU(3)_C
X SU(3)_L X U(1)_N models: the minimal model and the model with right-handed
(RH) neutrinos is studied in detail. Results show that new Z' gauge bosons can
be observed at the CLIC, and the cross sections in the model with RH neutrinos
are bigger than those in the minimal one.Comment: 11 pages, 4 figures, To appear in JET
Energy-momentum uncertainties as possible origin of threshold anomalies in UHECR and TeV-gamma ray events
A threshold anomaly refers to a theoretically expected energy threshold that
is not observed experimentally. Here we offer an explanation of the threshold
anomalies encountered in the ultra-high energy cosmic ray events and the
TeV-gamma ray events, by arguing that energy-momentum uncertainties due to
quantum gravity, too small to be detected in low-energy regime, can affect
particle kinematics so as to raise or even eliminate the energy thresholds. A
possible modification of the energy-momentum dispersion relation, giving rise
to time-of-flight differences between photons of different energies from gamma
ray bursts, is also discussed.Comment: minor changes in text and reference
On the variable-charged black holes embedded into de Sitter space: Hawking's radiation
In this paper we study the Hawking evaporation of masses of variable-charged
Reissner-Nordstrom and Kerr-Newman, black holes embedded into the de Sitter
universe by considering the charge to be function of radial coordinate of the
spherically symmetric metric.Comment: LaTex, p. 2
Dynamics of Overhauser Field under nuclear spin diffusion in a quantum dot
The coherence of electron spin can be significantly enhanced by locking the
Overhauser field from nuclear spins using the nuclear spin preparation. We
propose a theoretical model to calculate the long time dynamics of the
Overhauser field under intrinsic nuclear spin diffusion in a quantum dot. We
obtain a simplified diffusion equation that can be numerically solved and show
quantitatively how the Knight shift and the electron-mediated nuclear spin
flip-flop affect the nuclear spin diffusion. The results explain several recent
experimental observations, where the decay time of Overhauser field is measured
under different configurations, including variation of the external magnetic
field, the electron spin configuration in a double dot, and the initial nuclear
spin polarization rate.Comment: 6 pages, 5 figure
- …