1,757 research outputs found

    Enhancement of Gap Junction Function During Acute Myocardial Infarction Modifies Healing and Reduces Late Ventricular Arrhythmia Susceptibility

    Get PDF
    Objectives: To investigate the effects of enhancing gap junction (GJ) coupling during acute myocardial infarction (MI) on the healed infarct scar morphology and late post-MI arrhythmia susceptibility. Background: Increased heterogeneity of myocardial scarring after MI is associated with greater arrhythmia susceptibility. We hypothesized that short-term enhancement of GJ coupling during acute MI can produce more homogeneous infarct scars, reducing late susceptibility to post-MI arrhythmias. Methods: Following arrhythmic characterisation of the rat 4-week post-MI model (n=24), a further 27 Sprague-Dawley rats were randomised to receive rotigaptide to enhance GJ coupling (n=13) or saline control (n=14) by osmotic minipump immediately prior to, and for the first 7 days following surgical MI. At 4 weeks post-MI, hearts were explanted for ex vivo programmed electrical stimulation (PES) and optical mapping. Heterogeneity of infarct border zone (IBZ) scarring was quantified by histomorphometry. Results: Despite no detectable difference in infarct size at 4 weeks post-MI, rotigaptide-treated hearts had reduced arrhythmia susceptibility during PES (Inducibility score: rotigaptide 2.40.8, control 5.00.6, p=0.02) and less heterogeneous IBZ scarring (standard deviation of IBZ Complexity Score: rotigaptide 1.10.1, control 1.40.1, p=0.04), associated with an improvement in IBZ conduction velocity (rotigaptide 43.13.4 cm/s, control 34.82.0 cm/s, p=0.04). Conclusions: Enhancement of GJ coupling for only 7 days at the time of acute MI produced more homogeneous IBZ scarring and reduced arrhythmia susceptibility at 4 weeks post-MI. Short-term GJ modulation at the time of MI may represent a novel treatment strategy to modify the healed infarct scar morphology and reduce late post-MI arrhythmic risk

    Microreentrant left atrial tachycardia circuit mapped with an ultra-high-density mapping system

    Get PDF
    Micro-reentrant tachycardias are well described and are thought to be responsible for a small proportion of atrial tachycardias post-atrial fibrillation ablation. However, due to the small size of these re-entrant circuits and the poor spatial resolution of conventional mapping tools, they have not previously been mapped accurately in vivo in humans, and have therefore been difficult to distinguish from non-reentrant focal tachycardias. The newly-developed Rhythmia electroanatomical mapping system allows for the rapid creation of activation maps of ultra-high resolution. In this case report, we provide the first images of a micro-reentrant atrial tachycardia circuit in a post-atrial fibrillation setting, mapped with the high resolution Rhythmia mapping system

    Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line

    Get PDF
    Fibrillation is the most common arrhythmia observed in clinical practice. Understanding of the mechanisms underlying its initiation and maintenance remains incomplete. Functional re-entries are potential drivers of the arrhythmia. Two main concepts are still debated, the “leading circle” and the “spiral wave or rotor” theories. The homogeneous subclone of the HL1 atrial-derived cardiomyocyte cell line, HL1-6, spontaneously exhibits re-entry on a microscopic scale due to its slow conduction velocity and the presence of triggers, making it possible to examine re-entry at the cellular level. We therefore investigated the re-entry cores in cell monolayers through the use of fluorescence optical mapping at high spatiotemporal resolution in order to obtain insights into the mechanisms of re-entry. Re-entries in HL1-6 myocytes required at least two triggers and a minimum colony area to initiate (3.5 to 6.4 mm2). After electrical activity was completely stopped and re-started by varying the extracellular K+ concentration, re-entries never returned to the same location while 35% of triggers re-appeared at the same position. A conduction delay algorithm also allows visualisation of the core of the re-entries. This work has revealed that the core of re-entries is conduction blocks constituted by lines and/or groups of cells rather than the round area assumed by the other concepts of functional re-entry. This highlights the importance of experimentation at the microscopic level in the study of re-entry mechanisms

    Personality disorder: A mental health priority area

    Get PDF
    Personality disorders have received limited recognition as a public health priority, despite the publication of treatment guidelines and reviews showing effective treatments are available. Inclusive approaches to understanding and servicing personality disorder are required that integrate different service providers. This viewpoint paper identifies pertinent issues surrounding early intervention, treatment needs, consumer and carer experiences, and the need for accurate and representative data collection in personality disorder as starting points in mental health care reform

    Ventricular fibrillation mechanism and global fibrillatory organisation are determined by gap junction coupling and fibrosis pattern

    Get PDF
    Aims Conflicting data exist supporting differing mechanisms for sustaining ventricular fibrillation (VF), ranging from disorganised multiple-wavelet activation to organised rotational activities (RAs). Abnormal gap junction (GJ) coupling and fibrosis are important in initiation and maintenance of VF. We investigated whether differing ventricular fibrosis patterns and the degree of GJ coupling affected the underlying VF mechanism. Methods and Results Optical mapping of 65 Langendorff-perfused rat hearts was performed to study VF mechanisms in control hearts with acute GJ modulation, and separately in three differing chronic ventricular fibrosis models; compact (CF), diffuse (DiF) and patchy (PF). VF dynamics were quantified with phase mapping and frequency dominance index (FDI) analysis, a power ratio of the highest amplitude dominant frequency in the cardiac frequency spectrum. Enhanced GJ coupling with rotigaptide (n = 10) progressively organised fibrillation in a concentration-dependent manner; increasing FDI (0nM: 0.53±0.04, 80nM: 0.78±0.03, p < 0.001), increasing RA sustained VF time (0nM:44±6%, 80nM: 94±2%, p < 0.001) and stabilised RAs (maximum rotations for a RA; 0nM:5.4±0.5, 80nM: 48.2±12.3, p < 0.001). GJ uncoupling with carbenoxolone progressively disorganised VF; the FDI decreased (0µM: 0.60±0.05, 50µM: 0.17±0.03, p < 0.001) and RA-sustained VF time decreased (0µM: 61±9%, 50µM: 3±2%, p < 0.001). In CF, VF activity was disorganised and the RA-sustained VF time was the lowest (CF: 27±7% versus PF: 75±5%, p < 0.001). Global fibrillatory organisation measured by FDI was highest in PF (PF: 0.67±0.05 versus CF: 0.33±0.03, p < 0.001). PF harboured the longest duration and most spatially stable RAs (patchy: 1411±266ms versus compact: 354±38ms, p < 0.001). DiF (n = 11) exhibited an intermediately organised VF pattern, sustained by a combination of multiple-wavelets and short-lived RAs. Conclusion The degree of GJ coupling and pattern of fibrosis influences the mechanism sustaining VF. There is a continuous spectrum of organisation in VF, ranging between globally organised fibrillation sustained by stable RAs and disorganised, possibly multiple-wavelet driven fibrillation with no RAs. Translational perspective Multiple competing mechanisms have been proposed for sustaining VF. We reframed conflicting mechanisms reported in sustaining fibrillation and defined them as part of a continuum of varying global organisation, with some sustained by stable rotationalactivities. The underlying cardiac electroarchitecture, namely gap junction coupling and fibrosis, were important determinants of the VF mechanism. Characterising the VF mechanism and its relationship to the cardiac electroarchitecture may facilitate a patient-tailored treatment approach towards VF prevention in VF survivors. Organised fibrillation sustained by stable rotational activities could be considered for targeted ablation. Disorganised fibrillation dynamics may be better suited for conventional pharmacotherapy

    Temporal trends and lesion sets for persistent atrial fibrillation ablation: a meta-analysis with trial sequential analysis and meta-regression

    Get PDF
    BACKGROUND: Ablation for persistent atrial fibrillation (PsAF) has been performed for over 20 years, although success rates have remained modest. Several adjunctive lesion sets have been studied but none have become standard of practice. We sought to describe how the efficacy of ablation for PsAF has evolved in this time period with a focus on the effect of adjunctive ablation strategies. METHODS: Databases were searched for prospective studies of PsAF ablation. We performed meta-regression and trial sequential analysis. RESULTS: A total of 99 studies (15 424 patients) were included. Ablation for PsAF achieved the primary outcome (freedom of atrial fibrillation/atrial tachycardia rate at 12 months follow-up) in 48.2% (5% CI, 44.0-52.3). Meta-regression showed freedom from atrial arrhythmia at 12 months has improved over time, while procedure time and fluoroscopy time have significantly reduced. Through the use of cumulative meta-analyses and trial sequential analysis, we show that some ablation strategies may initially seem promising, but after several randomized controlled trials may be found to be ineffective. Trial sequential analysis showed that complex fractionated atrial electrogram ablation is ineffective and further study of this treatment would be futile, while posterior wall isolation currently does not have sufficient evidence for routine use in PsAF ablation. CONCLUSIONS: Overall success rates from PsAF ablation and procedure/fluoroscopy times have improved over time. However, no adjunctive lesion set, in addition to pulmonary vein isolation, has been conclusively demonstrated to be beneficial. Through the use of trial sequential analysis, we highlight the importance of adequately powered randomized controlled trials, to avoid reaching premature conclusions, before widespread adoption of novel therapies

    Visualizing intracardiac atrial fibrillation electrograms using spectral analysis

    Get PDF
    Atrial fibrillation is the most common cardiac arrhythmia, and it is associated with increased risk of stroke, heart failure, and mortality. This work describes spectral analysis techniques that are being used in conjunction with visualization algorithms to help guide catheter ablation procedures that aim at treating patients with arrhythmia
    • …
    corecore