8 research outputs found

    APOE4 carrier status determines association between white matter disease and grey matter atrophy in early-stage dementia

    No full text
    White matter hyperintensities, a neuroimaging marker of small-vessel cerebrovascular disease and apolipoprotein ε4 (APOE4) allele, are important dementia risk factors. However, APOE4 as a key effect modifier in the relationship between white matter hyperintensities and grey matter volume needs further exploration.Ministry of Education (MOE)Nanyang Technological UniversityNational Medical Research Council (NMRC)Published versionThis study is supported by the Ministry of Education, Singapore, under its MOE AcRF Tier 3 Award MOE2017-T3-1–002, National Medical Research Council (NMRC/CIRG/1415/2015 and NMRC/CSA/063/2014), Singapore, and under its Clinician Scientist Award (MOH-CSAINV18nov-0007) and Clinician Scientist Individual Research Grant (NMRC/CIRG/14MAY025), Strategic Academic Initiative grant from the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, and National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore (Reference Number: 991016)

    Dementia in Southeast Asia: influence of onset-type, education, and cerebrovascular disease

    No full text
    Background: Southeast Asia represents 10% of the global population, yet little is known about regional clinical characteristics of dementia and risk factors for dementia progression. This study aims to describe the clinico-demographic profiles of dementia in Southeast Asia and investigate the association of onset-type, education, and cerebrovascular disease (CVD) on dementia progression in a real-world clinic setting. Methods: In this longitudinal study, participants were consecutive series of 1606 patients with dementia from 2010 to 2019 from a tertiary memory clinic from Singapore. The frequency of dementia subtypes stratified into young-onset (YOD; <65 years age-at-onset) and late-onset dementia (LOD; ≥65 years age-at-onset) was studied. Association of onset-type (YOD or LOD), years of lifespan education, and CVD on the trajectory of cognition was evaluated using linear mixed models. The time to significant cognitive decline was investigated using Kaplan-Meier analysis. Results: Dementia of the Alzheimer’s type (DAT) was the most common diagnosis (59.8%), followed by vascular dementia (14.9%) and frontotemporal dementia (11.1%). YOD patients accounted for 28.5% of all dementia patients. Patients with higher lifespan education had a steeper decline in global cognition (p<0.001), with this finding being more pronounced in YOD (p=0.0006). Older patients with a moderate-to-severe burden of CVD demonstrated a trend for a faster decline in global cognition compared to those with a mild burden. Conclusions: There is a high frequency of YOD with DAT being most common in our Southeast Asian memory clinic cohort. YOD patients with higher lifespan education and LOD patients with moderate-to-severe CVD experience a steep decline in cognition.Published versionThis study was supported by the National Neuroscience Institute, Singapore

    Amyloid-tau-neurodegeneration profiles and longitudinal cognition in sporadic young-onset dementia

    No full text
    We examined amyloid-tau-neurodegeneration biomarker effects on cognition in a Southeast-Asian cohort of 84 sporadic young-onset dementia (YOD; age-at-onset <65 years) patients. They were stratified into A+N+, A- N+, and A- N- profiles via cerebrospinal fluid amyloid-β1-42 (A), phosphorylated-tau (T), MRI medial temporal atrophy (neurodegeneration- N), and confluent white matter hyperintensities cerebrovascular disease (CVD). A, T, and CVD effects on longitudinal Mini-Mental State Examination (MMSE) were evaluated. A+N+ patients demonstrated steeper MMSE decline than A- N+ (β = 1.53; p = 0.036; CI 0.15:2.92) and A- N- (β = 4.68; p = 0.001; CI 1.98:7.38) over a mean follow-up of 1.24 years. Within A- N+, T- CVD+ patients showed greater MMSE decline compared to T+CVD- patients (β = - 2.37; p = 0.030; CI - 4.41:- 0.39). A+ results in significant cognitive decline, while CVD influences longitudinal cognition in the A- sub-group.Ministry of Education (MOE)Ministry of Health (MOH)National Medical Research Council (NMRC)Published versionThis study is supported by the Ministry of Education, Singapore, under its MOE AcRF Tier 3 Award MOE2017-T3-1-002, National Medical Research Council (NMRC), Singapore, under its Clinician Scientist Award (MOH-CSAINV18nov0007) and Clinician Scientist Individual Research Grant (NMRC/CIRG/14MAY025)

    Expanding the DARS phenotype: late-adult onset myelopathy and leukoencephalopathy

    No full text
    A significant proportion of adult-onset neurological disorders remain diagnostic odysseys despite extensive evaluation. Hypomyelination with Brainstem and Spinal Cord Involvement and Leg Spasticity (HBSL) is an autosomal recessive disorder caused by mutations in the cytoplasmic aspartyl-tRNA synthetase (DARS) gene involved in mRNA translation. Clinical features of patients with DARS mutations include developmental delay, leg spasticity, cerebellar dysfunction, cognitive impairment and epilepsy. Most reported cases have been infantile-onset with severe neurological disability and neuroimaging abnormalities. To our knowledge, late-or adult-onset cases have never been reported in the literature. Here, we report for the first time, with video documentation and six-year clinical follow-up, an ethnic Malay patient with onset of spasticity and ataxia in late-adulthood, carrying a pathogenic DARS mutation discovered via whole-genome sequencing. His clinical and radiological findings were consistent with HBSL, but this diagnosis was not considered as, up until now, HBSL has only been reported with childhood/adolescent-onset. This case highlights that HBSL/DARS mutations should now be considered in the differential diagnosis of adult-onset spastic paraplegia and/or leukoencephalopathy.National Research Foundation (NRF)Published versionThis study was funded by Singapore’s SingHealth Foundation (SHF) Institute of Precision Medicine (PRISM) Research Grant (SHF/PRISM008/2016), Singapore’s National Research Foundation (NRF) Fellowship (NRF-NRFF2016-03), and the University of Malaya Parkinson’s Disease and Movement Disorder Research Program (PV035-2017)

    Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study.

    Get PDF
    BACKGROUND: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. METHODS: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. FINDINGS: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death. INTERPRETATION: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. FUNDING: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society

    Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study

    No full text
    BACKGROUND: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. METHODS: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. FINDINGS: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death. INTERPRETATION: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. FUNDING: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.status: publishe

    Age at symptom onset and death and disease duration in genetic frontotemporal dementia : an international retrospective cohort study

    No full text
    corecore