12,365 research outputs found

    Signatures of S-wave bound-state formation in finite volume

    Get PDF
    We discuss formation of an S-wave bound-state in finite volume on the basis of L\"uscher's phase-shift formula.It is found that although a bound-state pole condition is fulfilled only in the infinite volume limit, its modification by the finite size corrections is exponentially suppressed by the spatial extent LL in a finite box L3L^3. We also confirm that the appearance of the S-wave bound state is accompanied by an abrupt sign change of the S-wave scattering length even in finite volume through numerical simulations. This distinctive behavior may help us to discriminate the loosely bound state from the lowest energy level of the scattering state in finite volume simulations.Comment: 25 pages, 30 figures; v2: typos corrected and two references added, v3: final version to appear in PR

    Deconstructing triplet nucleon-nucleon scattering

    Full text link
    Nucleon-nucleon scattering in spin-triplet channels is analysed within an effective field theory where one-pion exchange is treated nonperturbatively. Justifying this requires the identification of an additional low-energy scale in the strength of that potential. Short-range interactions are organised according to the resulting power counting, in which the leading term is promoted to significantly lower order than in the usual perturbative counting. In each channel there is a critical momentum above which the waves probe the singular core of the tensor potential and the new counting is necessary. When the effects of one- and two-pion exchange have been removed using a distorted-wave Born approximation, the residual scattering in waves with L<=2 is well described by the first three terms in the new counting. In contrast, the scattering in waves with L>=3 is consistent with the perturbative counting, at least for energies up to 300 MeV. This pattern is in agreement with estimates of the critical momenta in these channels.Comment: 13 pages, RevTeX, 8 figures, minor clarifications adde

    Levinson's Theorem for Non-local Interactions in Two Dimensions

    Full text link
    In the light of the Sturm-Liouville theorem, the Levinson theorem for the Schr\"{o}dinger equation with both local and non-local cylindrically symmetric potentials is studied. It is proved that the two-dimensional Levinson theorem holds for the case with both local and non-local cylindrically symmetric cutoff potentials, which is not necessarily separable. In addition, the problems related to the positive-energy bound states and the physically redundant state are also discussed in this paper.Comment: Latex 11 pages, no figure, submitted to J. Phys. A Email: [email protected], [email protected]

    Scattering by a contact potential in three and lower dimensions

    Get PDF
    We consider the scattering of nonrelativistic particles in three dimensions by a contact potential Ω2δ(r)/2μrα\Omega\hbar^2\delta(r)/ 2\mu r^\alpha which is defined as the a0a\to 0 limit of Ω2δ(ra)/2μrα\Omega\hbar^2\delta(r-a)/2\mu r^\alpha. It is surprising that it gives a nonvanishing cross section when α=1\alpha=1 and Ω=1\Omega=-1. When the contact potential is approached by a spherical square well potential instead of the above spherical shell one, one obtains basically the same result except that the parameter Ω\Omega that gives a nonvanishing cross section is different. Similar problems in two and one dimensions are studied and results of the same nature are obtained.Comment: REVTeX, 9 pages, no figur

    The equation of state of neutron star matter and the symmetry energy

    Full text link
    We present an overview of microscopical calculations of the Equation of State (EOS) of neutron matter performed using Quantum Monte Carlo techniques. We focus to the role of the model of the three-neutron force in the high-density part of the EOS up to a few times the saturation density. We also discuss the interplay between the symmetry energy and the neutron star mass-radius relation. The combination of theoretical models of the EOS with recent neutron stars observations permits us to constrain the value of the symmetry energy and its slope. We show that astrophysical observations are starting to provide important insights into the properties of neutron star matter.Comment: 7 pages, 3 figure, talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons

    Full text link
    Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly-bound neutrons. Compared with Nilsson diagrams in text books which are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly-bound and resonant one-particle levels related to small orbital angular momenta \ell. Then, it is seen that weakly-bound neutrons in nuclei such as 1519^{15-19}C and 3337^{33-37}Mg may prefer to being deformed as a result of Jahn-Teller effect, due to the near degeneracy of the 1d5/2_{5/2}-2s1/2_{1/2} levels and the 1f7/2_{7/2}-2p3/2_{3/2} levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in text books is illustrated.Comment: 12 pages, 5 figure

    Formation spectra of light kaonic nuclei by in-flight (Kˉ,N{\bar K},N) reactions with chiral unitary amplitude

    Full text link
    We study theoretically the in-flight (K,NK^-,N) reactions for the formation of light kaonic nuclear systems to get deeper physical insights on the expected spectra, and to investigate the experimental feasibility of the reaction at new facilities like J-PARC. We show the expected spectra for the formation of the Kpp,KpnK^-pp, K^-pn, KnnK^-nn and KK^--11^{11}B systems which are accessible by the (K,NK^-,N) experiments. By considering the conversion part of the Green's function, we can show the missing mass spectra of the (K,NK^-,N) reactions coincidence with the particle emissions due to Kˉ{\bar K} absorption in KˉNπY{\bar K}N\to \pi Y processes. To calculate the cross sections, we use the so-called TρT\rho approximation to evaluate the optical potential. As for the amplitude TT, we adopt the chiral unitary amplitude of KˉN{\bar K}N channel in vacuum for simplicity, and we also check the medium effects by applying the chiral amplitude at finite density. The effects of the p-wave optical potential of Σ\Sigma(1385) channel and the contribution from Kˉ0{\bar K^0} mixing in 3^3He(K,nK^-,n) reaction are also evaluated numerically. To understand the meanings of the spectrum shape, we also study the behavior of the poles of kaon Green's function in nuclear matter. We conclude that 3^3He(K,nK^-,n) and 3^3He(K,pK^-,p) reactions coincident with the πΣ\pi\Sigma emission due to Kˉ{\bar K} absorption may show the certain structure in the bound region spectra indicating the existence of the unstable kaonic nuclear bound states. As for the 12^{12}C(K,pK^-,p) spectra with the πΣ\pi\Sigma emission, we may also observe the structure in the bound region, however, we need to evaluate the medium effects carefully for larger nuclei.Comment: 14 pages, 12 figure

    Explosive events associated with a surge

    Full text link
    The solar atmosphere contains a wide variety of small-scale transient features. Here, we explore the inter-relation between some of them such as surges, explosive events and blinkers via simultaneous spectral and imaging data taken with the TRACE imager, the SUMER, and CDS spectrometers on board SoHO, and SVST La Palma. The alignment of all data both in time and solar XY shows that SUMER line profiles, which are attributed to explosive events, are due to a surge phenomenon. The surge is triggered, most probably, by one or more Elerman bombs which are best visible in Halpha +-350 A but were also registered by TRACE Fe IX/X 171 A and correspond to a strong radiance increase in the CDS Mg IX 368.07 A line. With the present study we demonstrate that the division of small-scale transient events into a number of different subgroups, for instance explosive events, blinkers, spicules, surges or just brightenings, is ambiguous, implying that the definition of a feature based only on either spectroscopic or imaging characteristics as well as insufficient spectral and spatial resolution can be incomplete.Comment: 17 pages, 7 figures, 1 tabl
    corecore