8,517 research outputs found

    A microwave systems approach to measuring root zone soil moisture

    Get PDF
    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm

    Orbiting passive microwave sensor simulation applied to soil moisture estimation

    Get PDF
    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution

    Thermal expansion behavior of holes in graphene nanomeshes

    Get PDF
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROThe thermal expansion of a hole, in a planar system, follows the same trend as the thermal expansion of the whole system, i.e., the hole expands (contracts) if the material expands (contracts) under thermal excitation. At nanoscale, this phenomenon has not been studied so far. Here, using tools of classical molecular dynamics simulations, we show that graphene nanomeshes (GNMs) behave oppositely: While the whole structure contracts (expands), the nanoholes expand (contract) under thermal excitation. We propose and test a simple mechanism to describe this unexpected behavior in terms of out-of-plane vibrations of the atoms close to and far from the edges of the holes. This mechanism allows us to see that, contrary to usual planar systems, this behavior comes from nonuniform thermal expansion along the structure. Although the thermal expansion of holes in GNMs is contrary to the classical prediction, we verify that the thermal expansion of the whole GNM structure is the same as that of pristine graphene.The thermal expansion of a hole, in a planar system, follows the same trend as the thermal expansion of the whole system, i.e., the hole expands (contracts) if the material expands (contracts) under thermal excitation. At nanoscale, this phenomenon has not been studied so far. Here, using tools of classical molecular dynamics simulations, we show that graphene nanomeshes (GNMs) behave oppositely: While the whole structure contracts (expands), the nanoholes expand (contract) under thermal excitation. We propose and test a simple mechanism to describe this unexpected behavior in terms of out-of-plane vibrations of the atoms close to and far from the edges of the holes. This mechanism allows us to see that, contrary to usual planar systems, this behavior comes from nonuniform thermal expansion along the structure. Although the thermal expansion of holes in GNMs is contrary to the classical prediction, we verify that the thermal expansion of the whole GNM structure is the same as that of pristine graphene.891918CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPESP [2012/10106-8]Sem informação2012/10106-8Sem informaçãoThis work was supported in part by the Brazilian Agencies CNPq, FAPESP, FAPERJ, and FAEPEX/UNICAMP. A.F.F. acknowledges Grant No. 2012/10106-8 from São Paulo Research Foundation (FAPESP)

    Critical strength of attractive central potentials

    Full text link
    We obtain several sequences of necessary and sufficient conditions for the existence of bound states applicable to attractive (purely negative) central potentials. These conditions yields several sequences of upper and lower limits on the critical value, gc()g_{\rm{c}}^{(\ell)}, of the coupling constant (strength), gg, of the potential, V(r)=gv(r)V(r)=-g v(r), for which a first \ell-wave bound state appears, which converges to the exact critical value.Comment: 18 page

    Generic Constraints on the Relativistic Mean-Field and Skyrme-Hartree-Fock Models from the Pure Neutron Matter Equation of State

    Full text link
    We study the nuclear symmetry energy S(rho) and related quantities of nuclear physics and nuclear astrophysics predicted generically by relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) models. We establish a simple prescription for preparing equivalent RMF and SHF parametrizations starting from a minimal set of empirical constraints on symmetric nuclear matter, nuclear binding energy and charge radii, enforcing equivalence of their Lorenz effective masses, and then using the pure neutron matter (PNM) equation of state (EoS) obtained from ab-initio calculations to optimize the pure isovector parameters in the RMF and SHF models. We find the resulting RMF and SHF parametrizations give broadly consistent predictions of the symmetry energy J and its slope parameter L at saturation density within a tight range of <~2 MeV and <~6 MeV respectively, but that clear model dependence shows up in the predictions of higher-order symmetry energy parameters, leading to important differences in (a) the slope of the correlation between J and L from the confidence ellipse, (b) the isospin-dependent part of the incompressibility of nuclear matter K_tau, (c) the symmetry energy at supra-saturation densities, and (d) the predicted neutron star radii. The model dependence can lead to about 1-2 km difference in predictions of the neutron star radius given identical predicted values of J, L and symmetric nuclear matter (SNM) saturation properties. Allowing the full freedom in the effective masses in both models leads to constraints of 30<~J<~31.5 MeV, 35<~L<~60 MeV, -330<~K_tau<~-216 MeV for the RMF model as a whole and 30<~J<~33 MeV, 28<~L<~65 MeV, -420<~K_tau<~-325 MeV for the SHF model as a whole. Notably, given PNM constraints, these results place RMF and SHF models as a whole at odds with some constraints on K_tau inferred from giant monopole resonance and neutron skin experimental results.Comment: 15 pages, 7 figures, 4 table

    Helicobacter pylori and cancer among adults in Uganda

    Get PDF
    Data from Africa on infection with Helicobacter pylori (H. pylori) are sparse. Therefore, as part of an epidemiological study of cancer in Uganda, we investigated the prevalence and determinants of antibodies against H. pylori among 854 people with different cancer types and benign tumours. Patients were recruited from hospitals in Kampala, Uganda, interviewed about various demographic and lifestyle factors and tested for antibodies against H. pylori. In all patients combined, excluding those with stomach cancer (which has been associated with H. pylori infection), the prevalence of antibodies was 87% (723/833) overall, but declined with increasing age (p = 0.02) and was lower among people who were HIV seropositive compared to seronegative (p <0.001). Otherwise, there were few consistent epidemiological associations. Among those with stomach cancer, 18/21 (86%) had anti-H. pylori antibodies (odds ratio 0.8, 95% confidence intervals 0.2–2.9, p = 0.7; estimated using all other patients as controls, with adjustment for age, sex and HIV serostatus). No other cancer site or type was significantly associated with anti-H. pylori antibodies. The prevalence of H. pylori reported here is broadly in accord with results from other developing countries, although the determinants of infection and its' role in the aetiology of gastric cancer in Uganda remain unclear

    Supersymmetric transformations for coupled channels with threshold differences

    Full text link
    The asymptotic behaviour of the superpotential of general SUSY transformations for a coupled-channel Hamiltonian with different thresholds is analyzed. It is shown that asymptotically the superpotential can tend to a diagonal matrix with an arbitrary number of positive and negative entries depending on the choice of the factorization solution. The transformation of the Jost matrix is generalized to "non-conservative" SUSY transformations introduced in Sparenberg et al (2006 J. Phys. A: Math. Gen. 39 L639). Applied to the zero initial potential the method permits to construct superpartners with a nontrivially coupled Jost-matrix. Illustrations are given for two- and three-channel cases.Comment: 17 pages, 3 explicit examples and figures adde

    The neutral silicon-vacancy center in diamond: spin polarization and lifetimes

    Get PDF
    We demonstrate optical spin polarization of the neutrally-charged silicon-vacancy defect in diamond (SiV0\mathrm{SiV^{0}}), an S=1S=1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but non-zero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μsT_2>100~\mathrm{\mu s} at low-temperature, and a spin relaxation limit of T1>25 sT_1>25~\mathrm{s}. Optical spin state initialization around 946 nm allows independent initialization of SiV0\mathrm{SiV^{0}} and NV\mathrm{NV^{-}} within the same optically-addressed volume, and SiV0\mathrm{SiV^{0}} emits within the telecoms downconversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0\mathrm{SiV^{0}} is a promising candidate for a long-range quantum communication technology

    Scattering states of coupled valence-band holes in point defect potential derived from variable phase theory

    Full text link
    In this article we present a method to compute the scattering states of holes in spherical bands in the strong spin-orbit coupling regime. More precisely, we calculate scattering phase shifts and amplitudes of holes induced by defects in a semiconductor crystal. We follow a previous work done on this topic by Ralph [H. I. Ralph, Philips Res. Rept. 32 160 (1977)] to account for the p-wave nature and the coupling of valence band states. We extend Ralph's analysis to incorporate finite-range potentials in the scattering problem. We find that the variable phase method provides a very convenient framework for our purposes and show in detail how scattering amplitudes and phase shifts are obtained. The Green's matrix of the Schroedinger equation, the Lippmann-Schwinger equation and the Born approximation are also discussed. Examples are provided to illustrate our calculations with Yukawa type potentials.Comment: 16 pages and 9 figure
    corecore