8,900 research outputs found

    Surveying the solar system by measuring angles and times: from the solar density to the gravitational constant

    Full text link
    A surprisingly large amount of information on our solar system can be gained from simple measurements of the apparent angular diameters of the sun and the moon. This information includes the average density of the sun, the distance between earth and moon, the radius of the moon, and the gravitational constant. In this note it is described how these and other quantities can be obtained by simple earthbound measurements of angles and times only, without using any explicit information on distances between celestial bodies. The pedagogical and historical aspects of these results are also discussed briefly.Comment: 12 pges, one figur

    Comment on "On Mach's critique of Newton and Copernicus"

    Full text link
    Hartman and Nissim-Sabat have argued that Mach's idea of the relativity of rotational motion suffers from internal inconsistencies and leads to a contradiction that there cannot be a stationary bucket in a rotating universe. They also claimed that non-inertial electromagnetic and stellar aberration observations can distinguish between a rotating and a stationary universe, whereas according to Mach there cannot be any observable way to distinguish these two cases. We contest these objections.Comment: Six pages, to appear in AJ

    Microwave soil moisture measurements and analysis

    Get PDF
    An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented

    Terminal velocity and drag reduction measurements on superhydrophobic spheres

    Get PDF
    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons

    Self-organization of hydrophobic soil and granular surfaces

    Get PDF
    Soil can become extremely water repellent following forest fires or oil spillages, thus preventing penetration of water and increasing runoff and soil erosion. Here the authors show that evaporation of a droplet from the surface of a hydrophobic granular material can be an active process, lifting, self-coating, and selectively concentrating small solid grains. Droplet evaporation leads to the formation of temporary liquid marbles and, as droplet volume reduces, particles of different wettabilities compete for water-air interfacial surface area. This can result in a sorting effect with self-organization of a mixed hydrophobic-hydrophilic aggregate into a hydrophobic shell surrounding a hydrophilic core

    The Interaction of New and Old Magnetic Fluxes at the Beginning of Solar Cycle 23

    Get PDF
    The 11-year cycle of solar activity follows Hale's law by reversing the magnetic polarity of leading and following sunspots in bipolar regions during the minima of activity. In the 1996-97 solar minimum, most solar activity emerged in narrow longitudinal zones - `active longitudes' but over a range in latitude. Investigating the distribution of solar magnetic flux, we have found that the Hale sunspot polarity reversal first occurred in these active zones. We have estimated the rotation rates of the magnetic flux in the active zones before and after the polarity reversal. Comparing these rotation rates with the internal rotation inferred by helioseismology, we suggest that both `old' and `new' magnetic fluxes were probably generated in a low-latitude zone near the base of the solar convection zone. The reversal of active region polarity observed in certain longitudes at the beginning of a new solar cycle suggests that the phenomenon of active longitudes may give fundamental information about the mechanism of the solar cycle. The non-random distribution of old-cycle and new-cycle fluxes presents a challenge for dynamo theories, most of which assume a uniform longitudinal distribution of solar magnetic fields.Comment: 4 pages, 5 figures; accepted for publication in ApJ Letter

    The Late Quaternary geology of the Housatonic River basin in southwestern Massachusetts and adjacent Connecticut

    Get PDF
    Guidebook for field trips in western Massachusetts, northern Connecticut and adjacent areas of New York: 67th annual meeting October 10, 11, and 12, 1975: Trip B-7; C-

    Investigation of remote sensing techniques of measuring soil moisture

    Get PDF
    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models
    corecore